Appendix: Water Resources, Drainage and Flood Risk

Annex 1: Legislative and Planning Policy Context

LEGISLATION AND PLANNING POLICY CONTEXT

1.1 The following subsection provides a summary of relevant planning policy at a National and Local level as well as key environmental legislation. These planning policies and legislation form the basis of planning decision-making in relation to water quality, hydrology and flood risk.

NATIONAL POLICY

National Planning Policy Framework 2019 1 (NPPF)

- 1.2 The NPPF sets out the Government's planning policies for England and how these are expected to be applied. The principles of policy relevant to water resources and flood risk are provided in the following sections and, combined with the associated Planning Practice Guidance (PPG), form the current policy at the national level.
 - Section 14 'Meeting the challenge of climate change, flooding and coastal change', paragraph 149 and 150 of this section states the following;
 - "149. Plans should take a proactive approach to mitigating and adapting to climate change, taking into account the long-term implications for flood risk, coastal change, water supply, biodiversity and landscapes, and the risk of overheating from rising temperatures...
 - 150. New development should be planned for in ways that:
 - a) avoid increased vulnerability to the range of impacts arising from climate change. When new development is brought forward in areas which are vulnerable, care should be taken to ensure that risks can be managed through suitable adaptation measures, including through the planning of green infrastructure..."
 - Section 15 'Conserving and enhancing the natural environment', Paragraph 170 of this section states the following;
 - "170. Planning policies and decisions should contribute to and enhance the natural and local environment by...
 - ...e) preventing new and existing development from contributing to, being put at unacceptable risk from, or being adversely affected by, unacceptable levels of soil, air, water or noise pollution or land instability. Development should, wherever possible, help to improve local environmental conditions such as air and water quality, taking into account relevant information such as river basin management plans:..."

LOCAL POLICY

Woking Borough Council Local Development Document (October 2012)²

- 1.3 The Local Development Document Core Strategy was adopted in October 2012 and provides the local strategic planning policy context for the borough and covers the period up to 2027 but also ensures that its implementation will not compromise the ability of future generations to meet their needs. The following policies are considered relevant to the proposed development:
 - CS9 Flooding and Water Management: which states the following...

"The Council will determine planning applications in accordance with the guidance contained within the NPPF. The SFRA will inform the application of the Sequential and Exceptional Test set out in the NPPF.

The Council expects development to be in Flood Zone 1 as defined in the SFRA. Applications or allocations within Flood Zone 2 will only be considered if it can be demonstrated that there are no suitable alternatives in areas at lower risk.

The Council will not encourage development in Flood Zones 3a and 3b however, it accepts that this is possible in exceptional circumstances. Development proposals in Flood Zones 3a and 3b will be required to be accompanied by a comprehensive Flood Risk Assessment to demonstrate that the development will not increase flood risk elsewhere or exacerbate the existing situation. A sequential approach will apply to all developments in Flood Zone 3 and areas at risk of flooding from sources other than river. Any development in Flood Zone 3b will only be acceptable when it is either water compatible, essential infrastructure, or if brownfield land, does not increase the net number of residential units or business floorspace and improves local flood risk.

The Council will require all significant forms of development to incorporate appropriate sustainable drainage systems (SUDS) as part of any development proposals. If this is not feasible, the Council will require evidence illustrating this.

A Flood Risk Assessment will be required for development proposals within or adjacent to areas at risk of surface water flooding as identified in the SFRA. To further reduce the risk from surface water flooding, all new development should work towards mimicking greenfield run-off situations. Proposals which relate specifically to reducing the risk of flooding (e.g. defence/ alleviation work) will be supported so long as they do not conflict with other objectives of the Core Strategy for example, those relating to landscape and townscape character.

In areas at risk of flooding, proposals (including flood compensation proposals) with implications for biodiversity will be carefully considered for all levels of ecological designation. Where the development proposals are demonstrated to adversely affect an SPA, SAC or RAMSAR site, permission will not be granted.

All development, particularly on brownfield land, should seek to remediate contaminated land to ensure that risk to water quality as a result of development is minimised".

¹Department for Communities and Local Government. (2019). National Planning Policy Framework.

² Woking Borough Council. October 2012. Woking Local Development Document Woking Core Strategy.

Woking Football Club Water Resources, Drainage and Flood Risk

Woking Borough Council Site Allocations Development Plan Document (Nov 2018)³

- 1.4 The Woking Borough Council Site Allocations Development Plan Document (Nov 2018) identifies that the site is allocated for regeneration under *Policy UA44: Woking Football Club, Woking Gymnastic Club, Woking Snooker Club, Westfield Avenue, Woking, GU22 9AA.* The Policy identifies how the site is allocated for a mixed-use development to include a replacement football stadium, residential including Affordable Housing, and commercial retail uses. There are a number of key requirements identified within the policy that the development must address, those associated with drainage and flood risk are as follows:
 - "Due to the built-up nature of the site and surrounding area surface water flooding should be mitigated in the design of the development; and
 - Development to meet relevant Sustainable Drainage Systems requirements at the time of planning application for the development of the site."

LEGISLATIVE CONTEXT

- 1.5 A summary of key relevant UK water legislation is provided below:
 - Environmental Protection Act (1990) ⁴: sets out a range of provisions for environmental protection, including integrated pollution control for dangerous substances;
 - Water Resources Act (1991)⁵: consolidated previous water legislation with regard to both the quality and quantity of water resources;
 - Environment Act (1995)⁶: established a new body (the Environment Agency (EA))
 with responsibility for environmental protection and enforcement of legislation. This
 Act introduced measures to enhance protection of the environment including further
 powers for the prevention of water pollution;
 - Water Industry Act (1999)⁷: consolidated previous legislation relating to water supply and the provision of sewerage services;
 - Anti-Pollution Works Regulations (1999)⁸: provides powers to the EA to stop any activity (e.g. construction) that is giving or is likely to give rise to environmental pollution or to adequately enforce pollution control measures;
 - Control of Pollution (Oil Storage) (England) Regulations (2001) ⁹: Imposes general requirements for preventing pollution of controlled waters from oil storage, particularly fixed tanks or mobile bowsers. Makes contravention a criminal offence;

Woking Football Club Water Resources, Drainage and Flood Risk

- Water Act (2003)¹⁰: extends the provisions of the Water Resources Act (1991) and the Environment Act (1995) with regard to abstractions and discharges, water conservation and pollution control;
- Water Environment (Water Framework Directive) (WFD) (England and Wales) Regulations (2003)¹¹: requires the development and implementation of a new strategic framework for the management of the water environment and establishes a common approach to protecting and settling environmental objectives for groundwater and surface waters; and
- Flood and Water Management Act (2010) ¹²: makes provisions about the management of risks in connection with flooding and coastal erosion.

10 Water Act 2003 (c. 37). London: Her Majesty's Stationery Office.

³ Woking Borough Council. November 2018. Woking Borough Council Site Allocations Development Plan Document.

⁴ Environmental Protection Act 1990 (c. 43). London: Her Majesty's Stationery Office.

⁵Water Resources Act 1991 (c. 57). London: Her Majesty's Stationery Office.

⁶ Environment Act 1995 (c. 25). London: Her Majesty's Stationery Office.

⁷ Water Industry Act 1999 (c. 9). London: Her Majesty's Stationery Office.

⁸ Anti-Pollution Works Regulations S.I. 1999 No. 1006. London: Her Majesty's Stationery Office.

⁹ Control of Pollution (Oil Storage) (England) Regulations S.I. 2001 No. 2954. London: Her Majesty's Stationery Office.

¹¹ Water Environment (Water Framework Directive) (England and Wales) Regulations S.I. 2003 No. 3242. London: Her Majesty's Stationery Office.

¹² Flood and Water Management Act 2010 (c. 29). London: Her Majesty's Stationery Office

Annex 2: Flood Risk Assessment and Drainage Strategy

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

Proposed Redevelopment of Woking Football Stadium and Residential Development

Woking Football Stadium Kingfield Road Woking GU22 9AA

Prepared for:
Woking Football Club

20th November 2019

Project Number: RMA-C1947

environmental planning consultancy

THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY

RMA Environmental Limited, Suite 4, Swallow Court, Devonshire Gate, Tiverton EX16 7EJ t 01884 842740 e enquiries@rma-environmental.co.uk w www.rma-environmental.co.uk

Registered in England No. 6915388. Registered Office: 2 Chartfield House, Castle Street, Taunton TA1 4AS

Document Production Record:

Report Number: RMA-RC1947

Prepared by: Melissa Seymour

Checked by: Rob Murdock

Approved by: Rob Murdock

Document Revision Record:

Issue Number	Date	Revision Details
1	11 th September 2019	Client Issue
2	22 nd October 2019	Revised Issue
3	29 th October 2019	Revised Issue
4	08 th November 2019	Revised Issue
5	20 th November 2019	Final Issue

RMA Environmental Limited has prepared this report in accordance with the instructions of the above named client for their sole and specific use. Any third parties who may use the information contained herein do so at their own risk.

Issue 5 i RMA Environmental November 2019 i RMA-C1947

Woking Football Club Woking FC FRA

CONTENTS

1	INTRODUCTIO	ON
	Site Location ar Proposed Deve Requirements for	1 nd Land Use
2	BASELINE EN	VIRONMENTAL CONDITIONS
	Hydrology	
3	EXTERNAL FL	LOOD RISK4
	Historic Flooding Fluvial Flooding Surface Water F Groundwater Fl Sewer Flooding Mitigation Meas Safe Access/Eg	anisms 4 g 4 l 4 Flooding 6 cooding 7 sures 8 gress 9 grability 9
4	DRAINAGE AS	SSESSMENT11
	Summary Designing for E Long Term Main	
5	CONCLUSION	IS
	FIGURES Figure 1.1: Figure 3.1: Figure 3.2: Figure 4.1:	Site Location Plan EA Flood Map for Planning Groundwater Levels in Site Surface Water Exceedance Flow Route
	APPENDICES Appendix A: Appendix B:	Proposed Development Layout Topographical Survey

Issue 5 ii RMA Environmental November 2019 RMA-C1947

1 INTRODUCTION

Background

1.1 RMA Environmental Limited was commissioned by Woking Football Club to prepare a Flood Risk Assessment (FRA) to support a full planning application for the redevelopment of Woking Football Club including new residential development.

1.2 This FRA has been prepared in accordance with the National Planning Policy Framework (NPPF), associated Planning Practice Guidance (PPG) and Environment Agency (EA) standing advice on flood risk for new development.

Site Location and Land Use

- The site is currently occupied by a football stadium (Woking Football Club); a collection of large-footprint, low-rise buildings, including the Woking Snooker Centre; David Lloyd Leisure Centre (including tennis courts), Woking Gymnastics Club; car parking; and a small number of residential properties (81 Westfield Avenue, Hoe View, Park View and 1-6 Kingfield Road) situated in the north of the site.
- The site extends to an area of approximately 5.0 hectares (ha) and is located at National Grid Reference TQ 00566 57330 (refer to Figure 1.1).
- 1.5 The site is bordered by the following land uses:
 - Kingfield Road and residential dwellings are located adjacent to the northern boundary of the site;
 - Westfield Avenue forms the western boundary of the site, beyond this is further residential development and Hoe Stream;
 - residential dwellings are located along the eastern boundary of the site, a small pond is also located approximately 40 m east of the site;
 - a 'sports facility' including playing fields form the southern boundary and residential buildings form the south-western boundary of the site; and
 - the surrounding area is mostly urbanised with residential development.
- 1.6 Access to the site is currently via Kingfield Road to the north of the site. Further details on site topography, geology and hydrology are set out in Section 2.

Proposed Development

1.7 The Proposed Development comprises the redevelopment of the site, following the demolition of all existing buildings and structures, to provide a replacement stadium with ancillary facilities, including flexible retail, hospitality and community spaces, independent retail floorspace (Classes A1/A2/A3), a medical centre (Class D1) and vehicle parking, plus

 Issue 5
 1
 RMA Environmental

 November 2019
 RMA-C1947

Woking Football Club Woking FC FRA

residential accommodation comprising of 1,048 dwellings (Class C3) within 5 buildings of varying heights of between 3 and 10 storeys (and undercroft and part basement levels) on the south and west sides of the site, together with provision of new accesses from Westfield Avenue to car parking, associated landscaping and the provision of a detached residential concierge building.

1.8 Refer to the proposed development layout included within Appendix A.

Requirements for a Flood Risk Assessment

- 1.9 The requirements for FRA are provided in the NPPF and associated PPG. Paragraph 163 of the NPPF (2018) requires that a site-specific FRA should be submitted with planning applications for all sites greater than 1 ha in Flood Zone 1; for sites of any size within Flood Zones 2 or 3; in an area within Flood Zone 1 which has critical drainage problems; in an area within Flood Zone 1 which is identified in a strategic flood risk assessment as being at increased flood risk in the future; or an area within Flood Zone 1 that may be subject to other sources of flooding, where its development would introduce a more vulnerable use.
- 1.10 Flood Zone 1 is defined as land with little or no flood risk (an annual exceedance probability [AEP] of flooding of less than 0.1%); Flood Zone 2 is defined as having a medium flood risk (an AEP of between 0.1% and 0.5% for tidal areas or 0.1% and 1.0% for rivers); and Flood Zone 3 is defined as high risk (with an AEP of greater than 0.5% for tidal areas or greater than 1.0% for rivers).
- 1.11 FRAs should describe and assess all flood risks (from rivers, the sea, surface water, reservoirs, sewers and groundwater) to and from the development and demonstrate how they will be managed, including an evaluation of climate change effects.

Consultation

- 1.12 Consultation has been undertaken with the following consultees and further details of these consultations are included within Section 3 and 4 of this FRA:
 - a product 4 request has been undertaken with the EA to obtain the most up to date flood data for the site:
 - direct consultation in the form of a meeting and email correspondence has been undertaken with Katherine Waters at Woking Borough Council (who are acting at the Lead Local Flood Authority) to determine modelled flood extents for the Hoe Valley Restoration Scheme and the scope of the surface water drainage strategy; and
 - a pre-development enquiry has been undertaken with Thames Water to determine the location of sewers within the site and surrounding are and if there is sufficient capacity within the local foul sewerage system to supply the development.

Issue 5 2 RMA Environmental November 2019 2 RMA-C1947

2 BASELINE ENVIRONMENTAL CONDITIONS

Topography

2.1 A topographical survey of the site is included as Appendix B and this identifies that the site slopes in a north-westerly direction. The lowest recorded level is at 24.01 m above ordnance datum (AOD) in the north-western corner of the site and the highest recorded level is at 25.88 mAOD and is located in the far south-westerly corner of the site.

Hydrology

- 2.2 There is one 'main river' within a 500 m radius of the site. This is identified as the Hoe Stream which is located approximately 45 m north-west of the site and flows in a north-easterly direction.
- 2.3 There are no other significant watercourses or water bodies within the surrounding area.

Geology and Hydrogeology

- As reported on the British Geological Survey (BGS) online Geology of Britain Viewer, the site is underlain by the superficial deposits of Kempton Park Gravel comprising sand and gravel. This is further underlain by the bedrock geology of the Bagshot formation comprising sand.
- 2.5 The EA classify the superficial and bedrock geology as Secondary A Aquifers; these are defined as "permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers."
- 2.6 The far south-eastern part of the site is underlain by the bedrock geology of the London Clay Formation comprising clay silt and sand and this is classified by the EA as unproductive Strata; these are defined as "rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow."
- 2.7 The site is not located within a groundwater Source Protection Zone (SPZ).

¹ Main river is defined by the EA as any watercourse that contributes significantly to the hydrology of a catchment.

Issue 5 3 RMA Environmental November 2019 3 RMA-C1947

Woking Football Club Woking FC FRA

3 EXTERNAL FLOOD RISK

Flooding Mechanisms

- 3.1 The EA's flood map for planning (refer to Figure 3.1) indicates that the site lies entirely within Flood Zone 1 (low risk). Land located within Flood Zones 2 and 3 (medium and high risk, respectively) is located approximately 15 m to the north-west. Due to its close proximity to the site, it is necessary to assess the risk of climate change on the flood extents for the site's operational lifetime (estimated at 100 years). This is discussed further below.
- 3.2 The EAs risk of flooding from surface water flood maps identify that the majority of the site is at very low surface water flood risk (each year, this area has a chance of flooding of less than 1 in 1000 (0.1%)). There are only minimal areas with up to high surface water flood risk (each year, this area has a chance of flooding of greater than 1 in 30 (3.3%)) located within the north-west and southern areas of the site. This is discussed further below.
- The Woking Borough Council (WBC) Strategic Flood Risk Assessment (SFRA) Volume 2 Technical Report (Nov 2015) identifies that the majority of the site is located within an area "limited potential for groundwater flooding to occur". The south-eastern corner of the site, however, is within an area with "potential for groundwater flooding to occur at the surface". This is discussed further below.
- 3.4 The WBC's SFRA identifies that the site lies within a postcode area with 33 records of sewer flooding. This is discussed further below.
- A review of the SFRA and EA flood maps, has identified that there are no other significant sources of flooding at the site, i.e. from reservoirs.

Historic Flooding

- The WBC SFRA (Capita Symonds, 2015) includes a map showing historical fluvial flood events within the borough. This identified that the northern extent of the site was affected by the winter 2013/2014 flood extents as well as the September 1968 flood event.
- 3.7 The January 2003 flood event flooded the sports ground and playing field directly south of the site.
- The EA's historic flood map (included in Appendix C) identifies one record of historic fluvial flooding for the site dated from 1968. Mapping of the event identifies that fluvial flooding extended approximately 85 m into the northern part of the site.

Fluvial Flooding

As detailed above, the EA's flood map for planning (refer to Figure 3.1) indicates that the site lies entirely within Flood Zone 1 (low risk); however, the site is located 15 m from land located within Flood Zones 2 and 3 (medium and high risk, respectively), therefore, it is necessary to assess the risk of climate change on the flood extents for the site's operational lifetime (estimated at 100 years).

 Issue 5
 4
 RMA Environmental

 November 2019
 RMA-C1947

Detailed flood data has been obtained from the EA and modelled flood extents are derived from the Hoe Stream Flood Alleviation Scheme mapping (Hoe Stream model (Mayford to Wey confluence) (2014)), carried out using 2D modelling software (ISIS-Tuflow). This data is included within Appendix C of this report and identifies that the site benefits from flood defences along the Hoe Stream.

3.11 Consultation with WBC, who are acting as the Lead Local Flood Authority (LLFA) for the site, has identified that WBC and the EA have been working in partnership to design and implement the Hoe Valley Restoration Scheme and that this involves updating the 2014 modelling and this model is due to be published shortly. WBC have provided the output mapping for the defended scenario including climate change scenarios and the in-channel defended and undefended flood levels incorporation into this FRA (refer to Appendix C). The in-channel flood levels are summarised in Table 3.1 below.

Table 3.1: In-channe	l flood levels	from the	updated Hoe	Stream	Modelling
----------------------	----------------	----------	-------------	--------	-----------

Return Period	Peak Water Level (mAOD)						
Return Period	Defended Scenario	Undefended Scenario					
Q100	24.71	24.66					
Q100 cc35%	25.08	25.02					
Q100 cc70%	25.35	25.28					

3.12 As detailed above (and from reviewing the EA's spatial flood defence data), the site benefits from flood defences along the Hoe Stream. Table 3.2 below summarises details of the flood defences that are adjacent to the site.

Table 3.2: EA Flood Defence Data for the site

Type of defence	Location to the site at its		Level (OD)	Design standard	
	closest point	DS	US	(Condition)	
Flood embankment (part of the Hoe Stream FAS)	26 m west and extend for 823 m south along the Hoe Stream	25.60	26.00	100 years (Poor)	
Reinforced Concrete Flood Wall (Hoe Stream FAS RC17)	20 m north and extends for 50 m north along the Hoe Stream	25.45	25.45	100 years (Fair)	
Earth Flood Embankment (Hoe Stream FAS 1j)	50 m north and extends for 58 m north along the Hoe Stream	25.25	25.25	100 years (Good)	
Earth Flood Embankment (Hoe Stream FAS 4b)	70 m north and extends for 220 m north along the Hoe Stream	25.90	25.25	100 years (Fair)	

3.13 The EA's Guidance on climate change allowances (2016) states that for sites situated within EA Flood Zone 1, the central allowance should be used when determining the impact of climate change on flood risk.

Issue 5 5 RMA Environmental November 2019 5 RMA-C1947

Woking Football Club Woking FC FRA

The site falls within the Thames river basin district and the central allowance for the year 2115 is 25%. The updated EA modelling data for the site includes the 35% and 70% climate change scenarios and therefore, for the purpose of this report (and as a conservative measure) the 35% climate change scenario has been considered when determining the impacts of climate change on the proposed development.

3.15 From reviewing Table 3.1 and 3.2 above, the crest levels of the fluvial flood defences are approximately 0.17 m to 0.82 m above the defended modelled 100-year flood level with 35% allowance for climate change and, therefore, it is concluded that the flood defences would provide protection for the operational lifetime of the development.

Worst-Case Scenario

- The undefended 100-year flood event with a 35% allowance for climate change (25.02 mAOD) has been used as the worst-case scenario for the proposed development. It is important to note that this scenario is assuming that all flood defences within Woking were to breach during a 100-year flood event, which is considered to be improbable. A breach in the flood defences protecting the site would result in a lower flood risk to the site when compared to the undefended scenario; however, in the absence of breach modelling, the 100 year with 35% climate change allowance level is being used as a conservative measure.
- 3.17 During this flood event, the site would flood to a maximum depth of 1 m which would occur in the northern part of the site. The central part of the site will remain dry; however, some of the southern extent of the site would experience shallow flooding to depths up to 0.2 m as flood water would flow down Kingfield Road and enter the site from the south-east.
- 3.18 All residential development is proposed to be located approximately 1.5 m above existing ground level. The lowest residential finished floor level (which is located within Block 1 in the north-west of the site) is 25.5 mAOD; this is 480 mm above the undefended 100-year event with 35% climate change level and therefore, should this event occur, a safe refuge would be provided within the residential dwellings. Any land uses below this flood level are classified as 'less vulnerable' land uses.
- Based on the above, it is concluded that the site will be provided protection from flooding by the flood defences along the Hoe Stream for its operational lifetime (assumed to be 100 years). In the very unlikely event of a breach of the defences for the 100 years 35% climate change event, then part of the site will be flooded to a maximum depth of 1 m. However, all residential development is located a significant freeboard above this flood level providing a safe refuge for future occupants.

Surface Water Flooding

3.20 The EA's risk of flooding from surface water mapping identifies that most of the site has a very low risk of surface water flooding, as does much of the surrounding area. Very low surface water flood risk is defined where "each year, this area has a chance of flooding of less than 1 in 1000 (0.1%)."

Issue 5 6 RMA Environmental November 2019 6 RMA-C1947

There are small areas of low surface water flood risk located within the north-western corner of the site as well as in the south. Low surface water flood risk is defined where "each year, this area has a chance of flooding between 1 in 1000 (0.1%) and 1 in 100 (1%)".

- There are very limited areas of medium and high surface water flood risk in the north-western and southern areas of the site. Medium surface water flood risk is defined where "each year, this area has a chance of flooding of between 1 in 100 (1%) and 1 in 30 (3.3%)". High surface water flood risk is defined where "each year, this area has a chance of flooding of greater than 1 in 30 (3.3%)".
- 3.23 The EA's mapping indicates that the areas of surface water flood risk on site are limited in size and do not appear to constitute any flow paths (i.e. they originate within the site boundary). The extents of medium/high surface water flood risk are located with existing areas of hardstanding surrounding the buildings and is ultimately ponded water. Post-development, it is considered that any ponding of surface water in extreme events will be re-distributed to the new low points within the site (i.e. areas of open space and roads) and managed by the surface water drainage strategy.
- 3.24 The EA's surface water flood risk mapping shows what "happens when rainwater does not drain away through the normal drainage systems or soak into the ground but lies on or flows over the ground instead." It is noted that this type of flooding is difficult to predict and was based on the best information available to the EA regarding ground levels and drainage.
- 3.25 Surface water flood risk is deemed to be less significant than the fluvial flood risk and, consequently, would also be mitigated by measures outlined for the fluvial risk below as well as being reduced through the implementation of the proposed drainage strategy.

Groundwater Flooding

- As previously stated, the majority of the site is located within an area "limited potential for groundwater flooding to occur" and the south-eastern corner of the site is within an area with "potential for groundwater flooding to occur at the surface".
- 3.27 From reviewing the borehole records on site included within the Geo-Environmental and Geotechnical Assessment (Ground Investigation) Report, it is identified that groundwater is located at a level of between 22.22 and 23.26 m AOD which ranges between 1.7 m bgl and 2.87 m bgl within the Kempton Park Gravel that underlies the site (refer to Figure 3.2). The borehole data indicate a hydraulic gradient in a northerly direction towards to Hoe Stream, as expected.
- 3.28 The proposed development involves the construction of five residential blocks up to ten storeys high and the inclusion of a new football stadium. The two southern blocks (Block 4 and Block 5) include a lower ground level and a basement level. The three western blocks (Blocks 1, 2 and 3) comprise of just a lower ground level. The lowest proposed finished floor levels (FFL) of the lower ground level for all of the blocks is 22.50 mAOD. The proposed FFL of the basement levels is 20.50 m ADO. There are no basement levels proposed for the football stadium.

Issue 5 7 RMA Environmental November 2019 7 RMA-C1947

Woking Football Club Woking FC FRA

From reviewing the borehole records on site, in the area in which the western blocks are situated, groundwater was encountered between 22.22 and 23.26 mAOD. The proposed FFL of the lower ground level within these blocks is 22.50 m AOD and therefore the lower ground level will be located partially below groundwater level.

- 3.30 Groundwater depths within the area where the two southern blocks are proposed are identified to be between 22.87 and 23.16 mAOD. The proposed FFL for the basements within these blocks is 20.50 m AOD and therefore, they will be located primarily within the Kempton Park Gravel.
- 3.31 The land uses proposed within the lower ground level and basement level within the residential blocks will be used for parking uses only and in accordance with Table 2 of the NPPF, these land uses are classified as 'less vulnerable' to flooding.
- 3.32 Based on the above, it is considered likely that the lower ground level and basement levels of the residential blocks would extend below the anticipated groundwater levels. Considering that the footprint of the blocks are relatively small and there are only one-storey basement levels proposed, the volume of displaced groundwater may result in a rise in groundwater level locally; however it is considered that this would not increase the risk of groundwater emergence at the surface. The Kempton Park Gravel Formation is a Secondary A Aquifer with a relatively high transmissivity which would allow vertical and lateral migration of surface water.
- Therefore, the risk of groundwater flooding affecting the proposed development and the potential to increase groundwater flood risk is deemed to be low.

Sewer Flooding

The Woking Borough Council historic flood records within the SFRA (2015) show that the site lies within a postcode area with 33 records of overloaded sewer flooding. However, the exact magnitude, extent and location of these flooding incidents are not recorded.

Mitigation Measures

Groundwater Flooding

It is recommended that the construction of the basements incorporates flood resistant techniques to ensure that the basement would remain free from groundwater ingress. Techniques may include the likes of a cofferdam around the perimeter of the basement to prevent lateral movement of groundwater, dewatering of the excavation for the development and retaining walls within the basement levels are likely to be required.

Sewer Flooding

Mitigation against sewer flooding could be achieved through the provision of non-return valves which prevent water entering the properties from drains or sewers. Non-return valves can be installed with gravity sewers or drains, within the site's private sewer system. Further information is provided in the CIRIA publication 'Low cost options for revention of flooding from sewers'.

Issue 5 8 RMA Environmental November 2019 8 RMA-C1947

Safe Access/Egress

3.37 Access/egress to the site is via Kingfield Road to the north of the site and via Westfield Avenue located along the western boundary of the site.

- 3.38 As previously stated, the site will be provided protection via the flood defences along the Hoe Stream for its operational lifetime and, therefore, safe access/egress via Westfield Avenue along the western boundary is readily achievable.
- 3.39 During the worst-case scenario, (i.e. the undefended 100-year flood event with 35% allowance for climate change (25.02 mAOD)), Kingfield Road and the northern extent of Westfield Avenue would flood to a maximum depth of 1 m. The central area of the site would remain dry.
- 3.40 All residential development is located approximately 1.5 m above the existing ground level and at least 480 mm above the undefended 100-year event with 35% climate change level. Therefore, should this event occur, a safe refuge would be provided within all of the residential dwellings.
- On this basis, it is concluded that future occupants of the development would be safe during the design flood event for the operational lifetime of the development.
- 3.42 The future occupants of the site would be required to sign up to the EA's flood warning service for the Hoe Stream, to ensure that sufficient warning is provided in the event of an extreme flood. This will ensure that, should the EA issue a flood warning for the area, all occupants would have sufficient time to leave the site.
- 3.43 The home owners will be responsible for acting on flood warnings and the procedures to be followed in the event of a flood. These measures will be set in a Flood Evacuation Plan, which would be submitted to the EA and Council for approval prior to commencement of the proposed development.

Land Use Vulnerability

- Table 2 of the NPPF PPG sets out a schedule of land uses based on their vulnerability or sensitivity to flooding. As set out in Table 2, the proposed residential development is classified as a land use that is 'more vulnerable' and the commercial development is classified as 'less vulnerable' to flooding.
- The site is currently located within Flood Zone 1 (low risk) and from receiving detailed flood data from the EA, the site is protected by flood defences for its operational lifetime. During the worst-case scenario (the undefended 100 year flood event with 35% allowance for climate change), parts of the site will be located within future Flood Zone 2 and 3 and the lower ground level and basements will flood; however, these comprise of car parking areas and all residential 'more vulnerable' development will be located at least 480 mm above the flood level.
- 3.46 Referring to Table 3 of the PPG, all land uses are considered appropriate within Flood Zone 1, however, the Sequential Test would need to be passed for any proposed development in Flood Zones 2 or 3a.

 Issue 5
 9
 RMA Environmental

 November 2019
 RMA-C1947

Woking Football Club Woking FC FRA

3.47 The Woking Borough Council Site Allocations Development Plan Document (November 2018) identifies that the site is allocated for regeneration under *Policy UA44: Woking Football Club, Woking Gymnastic Club, Woking Snooker Club, Westfield Avenue, Woking, GU22 9AA.* The Policy identifies how the site is allocated for a mixed-use development to include a replacement football stadium, residential including affordable housing and commercial retail uses. There are a number of key requirements identified within the policy that the development must address, those associated with drainage and flood risk are as follows:

- Due to the built-up nature of the site and surrounding area surface water flooding should be mitigated in the design of the development; and
- Development to meet relevant Sustainable Drainage Systems requirements at the time of planning application for the development of the site.
- Considering that the site is currently located within Flood Zone 1 (low risk) and is identified within the Woking Borough Council Site Allocations Development Plan, the development should be deemed appropriate in planning policy terms in its proposed location.

Issue 5 10 RMA Environmental November 2019 RMA-C1947

4 DRAINAGE ASSESSMENT

Introduction

- 4.1 This drainage strategy has been prepared in accordance with Defra's "Non-statutory technical standards for sustainable drainage systems" (March 2015) to ensure that the proposed development does not increase flood risk to the site or elsewhere and where practicable reduces flood risk over the lifetime of the development.
- 4.2 Peak rainfall intensity is expected to increase as a result of climate change and, as such, storage calculations have included a 40% increase in rainfall depths in accordance with current climate change guidance.
- 4.3 The surface water drainage strategy has been prepared by Pitman Associates in association with RMA Environmental Ltd and is provided in Appendix D.

Summary

- 4.4 The site currently comprises of Woking football stadium, a leisure centre comprising tennis courts, a snooker club, gymnasium, various sports halls and car parking area and residential dwellings.
- 4.5 Falling head permeability tests have been undertaken within the existing wells on site to determine whether infiltration is feasible. Due to logistical reasons and considering that the Kingfield site is still operational, BRE365 compliant infiltration testing was not practicable on site at this time. The falling head permeability test results are included in Appendix D of this report. This testing confirmed that there is low potential for infiltration across most of the site. Hoe Stream is located just 40 m north-west of the site and it is proposed to maintain the existing connections on site and discharge surface water into the surface water sewer on Westfield Road which ultimately discharges to Hoe Stream.
- 4.6 Table 4.1 provides an overview of the feasibility of a range of Sustainable Drainage Systems (SuDS) techniques which are considered in accordance with the SuDS hierarchy in order to identify the most appropriate for the proposed development.

Table 4.1: Type and Feasibility of SuDS

Technique	Comments	Feasibility	Utilised		
Green roofs	Requires flat or minimal slope roofs. Limited value for runoff attenuation in comparison with other techniques.	Feasible	√	Green roofs are proposed on residential blocks, where practicable.	
Soakaways and infiltration trenches	Require infiltration rates of 1 x 10 ⁻⁶ m/s or greater. Shallow soakaways or infiltration trenches would be required where groundwater is shallow (i.e. less than 2.0 mbgl).	Not Feasible	x	Falling head tests have been completed and infiltration rates and groundwater depth are not suitable for soakaways.	

Issue 5 11 RMA Environmental November 2019 RMA-C1947

Woking Football Club Woking FC FRA

Technique	Comments	Feasibility		Utilised
Infiltration basins / swales	Are widely applicable for attenuation and treatment of surface runoff by infiltration into the ground. Require slope of no more than 4-10% and can act as a substitute for soakaways where groundwater is shallow.	Not Feasible	х	Falling head tests have been completed and infiltration rates and groundwater depth are not suitable for soakaways.
Bio- retention – landscaped infiltration areas	Primarily used to remove pollutants from runoff and due to their shallow nature are not as effective at runoff attenuation as other SUDS techniques.	Feasible	✓	Runoff from surfaces will be diverted to tree pits and rain gardens with excess runoff being diverted to the positive drainage system.
Permeable pavement	Ideally requires a level site and favourable underlying ground conditions. May be suitable in areas of relatively flat topography. Can be linked with geocellular storage or a porous sub-base.	Feasible	√	Lined permeable paving will be used for non-adopted areas.
Non- infiltration swales	Used in the same way as carrier ditches or storage bunds. Shallow swales can be used for conveyance and/or storage.	Not Feasible	х	Insufficient space is available within the layout as a result of economic constraints (refer to Para 4.6)
Filter drains	These are normally used adjacent to areas of car parking or roads and convey runoff via flow through an engineered substrate.	Feasible	х	Not proposed.
Balancing ponds or attenuation basins	These are permanent ponds or basins that provide storage. These are appropriate for most sites but require suitable space.	Not Feasible	х	Insufficient space is available within the layout as a result of economic constraints (refer to Para 4.6)
Geo- cellular storage	Geo-cellular storage or similar sub-base medium beneath car parking areas and/or other areas of hardstanding and/or other forms of underground attenuation.	Feasible	✓	Storage provided within roads and permeable paving above the tanks will provide additional storage and appropriate treatment for runoff from road surface

4.7 The site at Kingfield Road has been designed to enable the development of a new football stadium with a capacity of 9,026 seats. In order to enable the redevelopment of the football stadium and make it financially sustainable, the site must incorporate a certain quantum of residential development. Given the economic and technical constraints on this site, insufficient space is available within the layout for above ground SuDS features, such as swales and ponds. Falling head tests have been completed and confirmed that infiltration rates and groundwater depths are not suitable for soakaways, however, green roofs are proposed on all residential blocks and bio-retention areas incorporating tree pits and rain gardens are also to be provided, where possible. Lined permeable paving will be also be used to improve the quality of runoff.

Issue 5 12 RMA Environmental November 2019 RMA-C1947

The rate of discharge to the public sewer will be controlled by a hydro-brake. Refer to drawings SK001/A AND S002/A within Appendix D of this report.

- 4.9 The drainage arrangement for the proposed development will limit runoff for all events up to and including the 100 year plus 40% climate change to approximately 80% of the 1 year rate of runoff from the site i.e. to a rate of 30 l/s. This is likely to be significantly less than the existing runoff rates for storms in excess of the 1 in 15 year return period.
- 4.10 Full details of the proposed surface water drainage strategy are provided in Appendix D.

Designing for Exceedance Events

- 4.11 If the proposed drainage system were to become blocked or an event above the design event occur, then exceedance flows would be routed along the road network towards the northern boundary onto Kingfield Road and ultimately into Hoe Stream (refer to Figure 4.1). This would mimic what would occur on the site in its existing condition and would ensure that the proposed development is safe during an exceedance event.
- 4.12 To account for the possibility of surcharge in the receiving public surface water sewer, the model outputs have been included within Appendix D of this report and the outfall from the model has been surcharged to 23.02 m AOD (the soffit level at the point of connection). This confirmed that there is no flooding within the site during the surcharged condition.

Long Term Maintenance of SuDS

- 4.13 Where SuDS features serve more than one property, it would be the responsibility of the developer to either maintain the SuDS features themselves or to negotiate with and secure the agreement of a third party to maintain the sustainable drainage system.
- 4.14 The maintenance requirements of the proposed SuDS features for use in the drainage strategy are detailed in the SuDS Manual and would be carried out accordingly.

Foul Drainage

- 4.15 Consultation with Thames Water (refer to Appendix E) identifies the location of sewers in the vicinity of the Site. This has identified that there are foul sewers along Westfield Avenue to the west of the site.
- 4.16 Consultation with Thames Water was undertaken to determine if there is sufficient capacity within the local foul sewerage system (refer to Appendix E). This concluded that the foul sewerage network does not currently have enough capacity to serve the development. Therefore, Thames Water are required to carry out detailed modelling work and potential off-site reinforcement to ensure the necessary improvement are in place prior to the development going ahead.
- 4.17 It should be noted that since the publication of the new connections and development charging rules in April 2018, drainage authorities in England are obligated to provide a point of connection and undertake any mitigation or improvement works and network reinforcements, where necessary. These will be programmed once planning consents are granted. Therefore, it is recommended that Thames Water should be consulted following planning consent so this detailed network modelling can be undertaken.

Issue 5 13 RMA Environmental November 2019 RMA-C1947

Woking Football Club Woking FC FRA

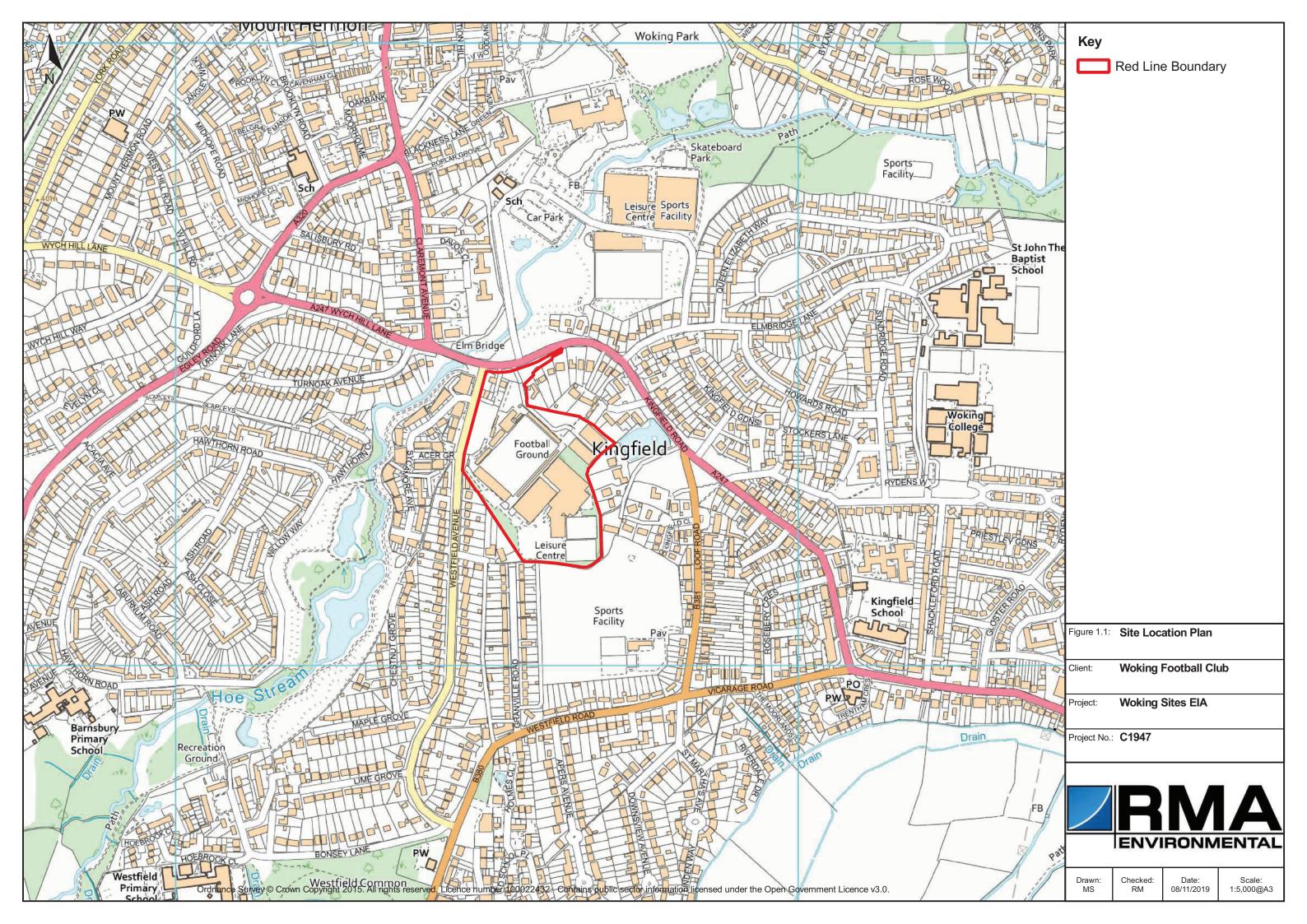
5 CONCLUSIONS

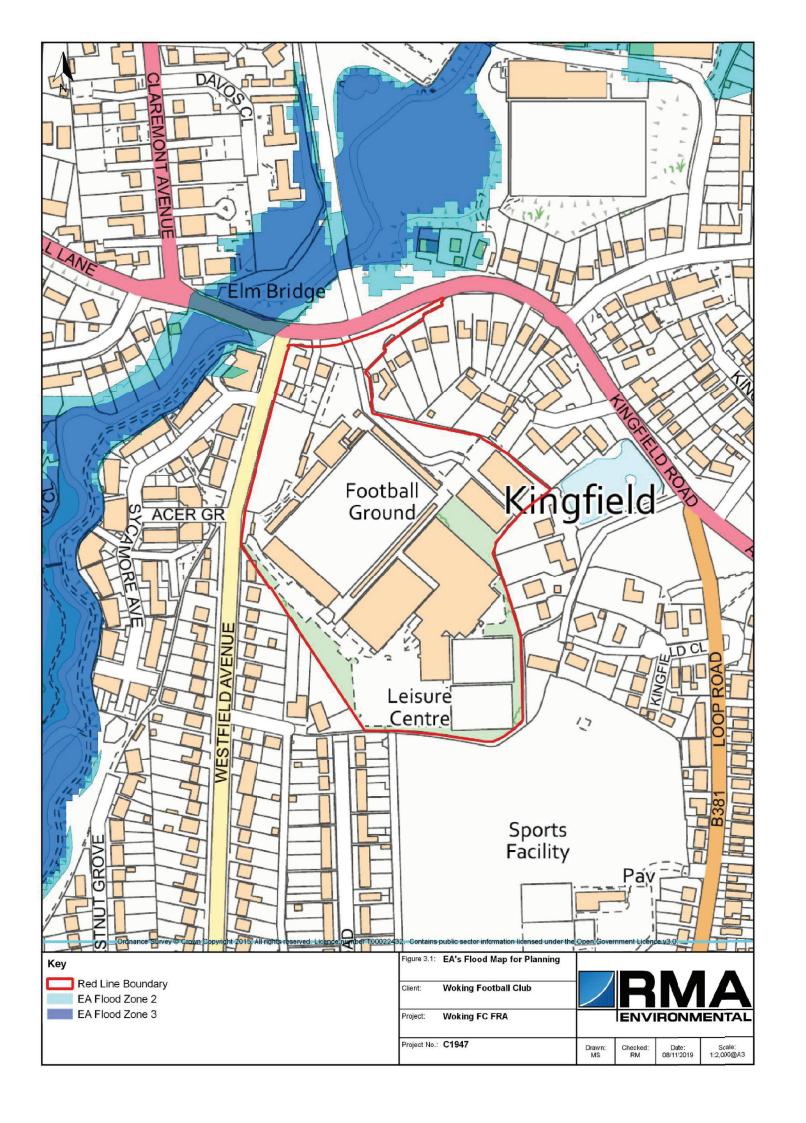
The requirements for Flood Risk Assessment are provided in the National Planning Policy Framework and its associated Planning Practice Guidance, together with the Environment Agency's Guidance Notes. This policy and associated guidance have been followed in the preparation of this FRA.

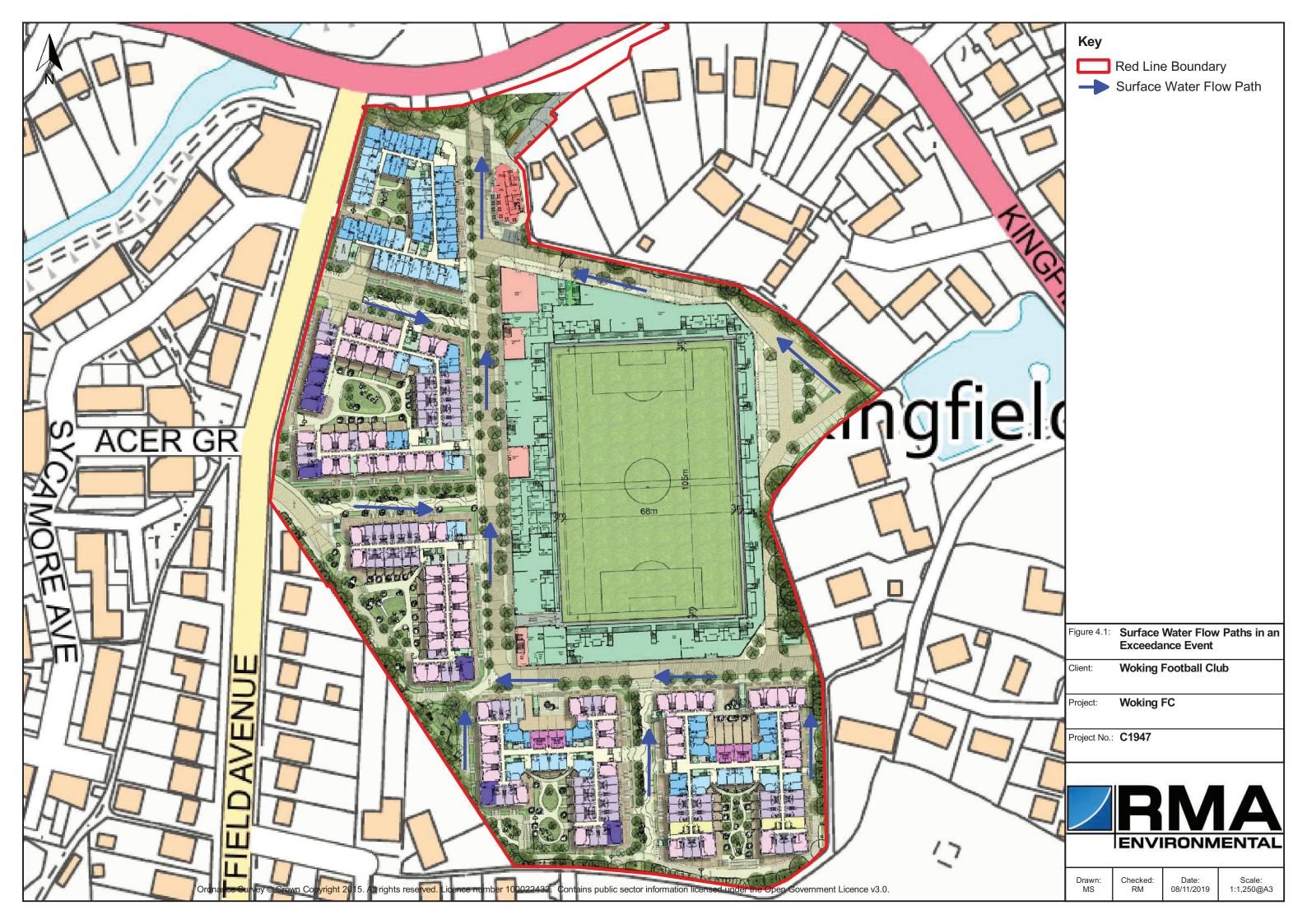
- The EA's flood map for planning identifies that the entire site lies within Flood Zone 1 (low risk). Land located within Flood Zones 2 and 3 (medium and high risk, respectively) is located approximately 15 m to the north-west and, therefore, it is necessary to assess the risk of climate change on the flood extents for the site's operational lifetime (estimated at 100 years).
- WBC and the EA have been working in partnership to design and implement the Hoe Valley Restoration Scheme and that this involves updating the 2014 modelling and this model is due to be published shortly. WBC have provided the output mapping for the defended scenario including climate change scenarios and this concludes that the crest levels of the fluvial flood defences are approximately 0.17 m to 0.82 m above the defended modelled 100-year flood level with 35% allowance for climate change and, therefore, it is concluded that the flood defences would provide protection for the operational lifetime of the development.
- The undefended 100-year flood event with a 35% allowance for climate change (25.02 mAOD) has been used as the worst-case scenario for the proposed development and during this flood event, the site would flood to a maximum depth of 1 m which would occur in the northern part of the site. The central part of the site will remain dry; however, some of the southern extent of the site would experience shallow flooding to depths up to 0.2 m as flood water would flow down Kingfield Road and enter the site via the south-east.
- All residential development is proposed to be located approximately 1.5 m above the existing ground level and this is at a minimum 480 mm above the undefended 100-year event with 35% climate change level. Therefore, should this event occur, a safe refuge would be provided within the residential dwellings. Any land uses below this flood level are classified as 'less vulnerable' land uses.
- When referring to surface water flood mapping, most of the site has a very low to low risk of surface water flooding. There are very limited areas of medium and high surface water flood risk in the north-western and southern areas of the site; however, these areas are limited in size and do not constitute any flow paths (i.e. they originate within the site boundary). The extents of medium/high surface water flood risk are located with existing areas of hardstanding surrounding the buildings and is ultimately ponded water. Post-development, any ponding of surface water in extreme events will be re-distributed to the new low points within the site (i.e. areas of open space and roads), as well as being reduced through the implementation of the proposed drainage strategy.

Issue 5 14 RMA Environmental November 2019 RMA-C1947

5.7 From reviewing the borehole records on site included within the Ground Investigation report, groundwater is located between 1.7 and 2.87 m bgl within the Kempton Park Gravel. When assessing groundwater levels and FFLs of the basement and lower ground level, it is considered likely that the lower ground level and basement levels of the residential blocks would extend below the anticipated groundwater levels.

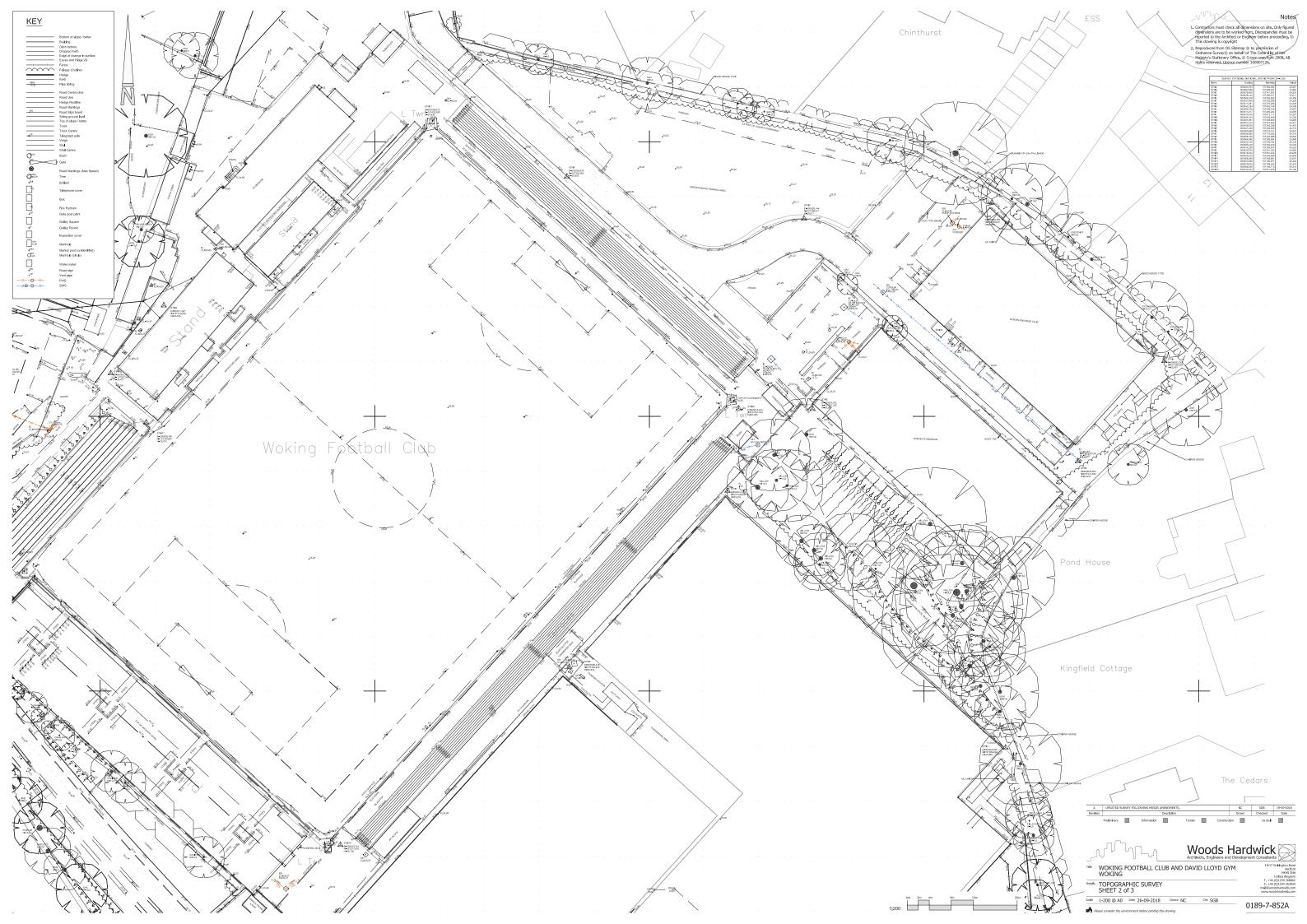

- 5.8 Considering that the footprints of the blocks are relatively small and there is only one-storey basement levels proposed, the volume of displaced groundwater may result in a small rise in groundwater level locally; however, it is considered unlikely that the risk of groundwater emergence at the surface would be increased. It is recommended that the construction of the basements incorporate flood resistant techniques to ensure that they would remain free from groundwater ingress.
- The WBC historic flood records show that the site lies within a postcode area with 33 records of overloaded sewer flooding. However, the exact magnitude, extent and location of these flooding incidents are not recorded. Mitigation against sewer flooding could be achieved through the provision of non-return valves which prevent water entering the properties from drains and sewers.
- The proposed drainage strategy comprises of green roofs, lined permeable paving and geo-cellular tanks and would ensure that surface water runoff rates for the proposed development would be limited to 30 l/s which is 80% of the existing 1 in 1 year runoff rate. Surface water runoff would discharge into the public sewer along Kingfield Road which ultimately drains to the Hoe Stream. Attenuation would be provided for all return periods up to and including the 1 in 100 year event inclusive of a 40% allowance for climate change.
- 5.11 This FRA has therefore demonstrated that the proposed development will be safe and that it would not increase flood risk elsewhere. The proposed land uses are classified as 'more vulnerable' and 'less vulnerable' development which are considered appropriate in relation to the flood risk vulnerability classifications set out in Table 3 of the NPPF. The development should therefore be considered acceptable in planning policy terms.


Woking Football Club Woking FC FRA


Figures

Issue 5 15 RMA Environmental November 2019 RMA-C1947

Issue 5 16 RMA Environmental November 2019 RMA-C1947


Appendix A: Proposed Development Layout

Appendix B: Topographical Survey

Issue 5 18 RMA Environmental November 2019 RMA-C1947

Appendix C: EA Flood Data

 Issue 5
 19
 RMA Environmental RMA-C1947

 November 2019
 RMA-C1947

Product 4 (Detailed Flood Risk) for Woking Football Club Our Ref: THM_116387

Product 4 is designed for developers where Flood Risk Standing Advice FRA (Flood Risk Assessment) Guidance Note 3 Applies. This is:

- i) "all applications in Flood Zone 3, other than non-domestic extensions less than 250 sq metres; and all domestic extensions", and
- ii) "all applications with a site area greater than 1 ha" in Flood Zone 2.

Product 4 includes the following information:

Ordnance Survey 1:25k colour raster base mapping;

Flood Zone 2 and Flood Zone 3;

Relevant model node locations and unique identifiers (for cross referencing to the water levels, depths and flows table);

Model extents showing defended scenarios;

FRA site boundary (where a suitable GIS layer is supplied);

Flood defence locations (where available/relevant) and unique identifiers; (supplied separately)

Flood Map areas benefiting from defences (where available/relevant);

Flood Map flood storage areas (where available/relevant);

Historic flood events outlines (where available/relevant, not the Historic Flood Map) and unique identifiers;

Statutory (Sealed) Main River (where available within map extents);

A table showing:

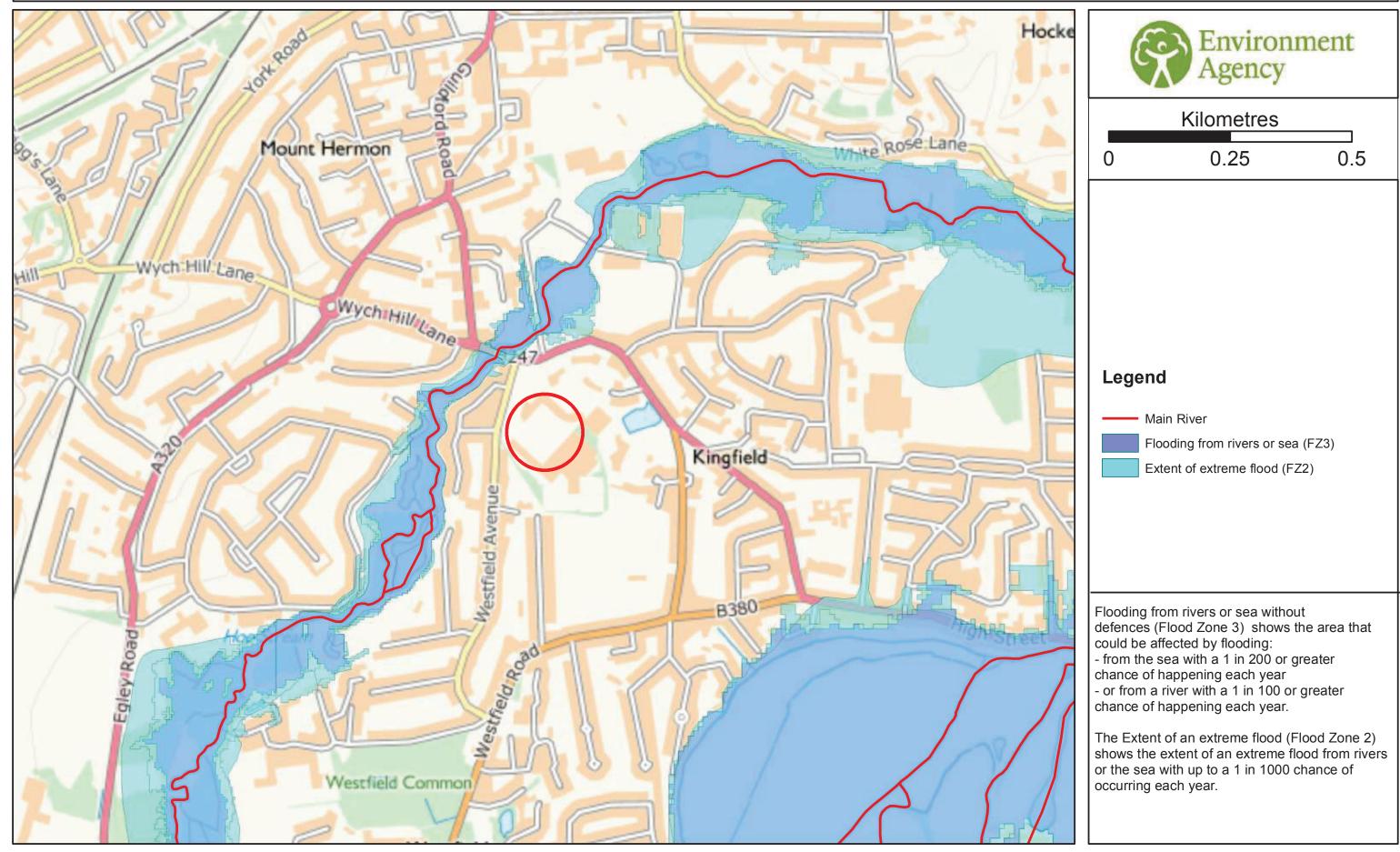
- i) Model node X/Y coordinate locations, unique identifiers, and levels and flows for *defended* scenarios.
- ii) Flood defence locations unique identifiers and attributes; (supplied seperately)
- iii) Historic flood events outlines unique identifiers and attributes; and
- iv) Local flood history data (where available/relevant).

Please note:

If you will be carrying out computer modelling as part of your Flood Risk Assessment, please request our guidance which sets out the requirements and best practice for computer river modelling.

This information is based on that currently available as of the date of this letter. You may feel it is appropriate to contact our office at regular intervals, to check whether any amendments/ improvements have been made. Should you recontact us after a period of time, please quote the above reference in order to help us deal with your query.

This information is provided subject to the enclosed notice which you should read.


This letter is not a Flood Risk Assessment. The information supplied can be used to form part of your Flood Risk Assessment. Further advice and guidance regarding Flood Risk Assessments can be found on our website at:

https://www.gov.uk/guidance/flood-risk-assessment-local-planning-authorities

If you would like advice from us regarding your development proposals you can complete our pre application enquiry form which can be found at:

https://www.gov.uk/government/publications/pre-planning-application-enquiry-form-preliminary-opinion

Flood Map for Planning centred on Woking Football Club Created on 25/02/2019 REF: THM_116387

Environment Agency THM_116387

Defence information

Defence Location:

Hoe Stream FAS

Description:

This location is offered protection from the Hoe Valley Scheme. This consists of flood walls and embankments running from Westfield Primary School through to Woking Leisure Centre. These defences are currently maintained by the Environment Agency. The scheme offers protection up to 1 in 100 protection (1% chance of occurring annually) and includes an allowance for climate change. There are no other defences planned in the area.

Model information THM_116387

Model:

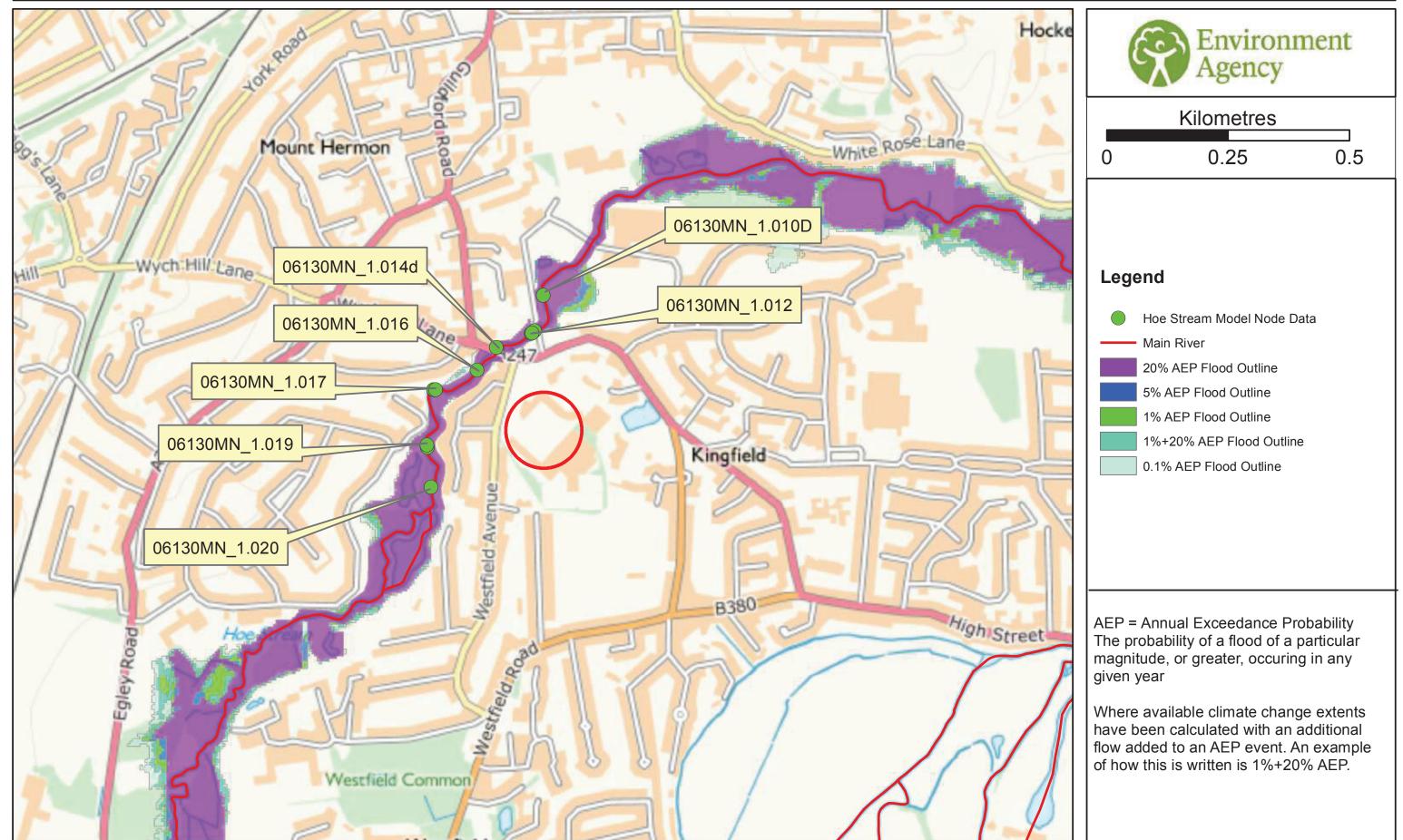
Hoe Stream (Mayford to Wey confluence) 2014

Description:

The information provided is from the Hoe Stream Flood Alleviation Scheme mapping completed in April 2014. The study was carried out using 2D modelling software (ISIS-Tuflow).

The mapping and modelling was split into two sections, Purbright to Mayford and Mayford to the Wey confluence.

Model design runs:


1 in 5 / 20% Annual Exceedance Probability (AEP); 1 in 20 / 5% AEP; 1 in 75 / 1.3% AEP; 1 in 100 / 1% AEP, 1 in 100+20% / 1% AEP plus 20% increase in flows and 1 in 1000 / 0.1% AEP.

Mapped outputs:

1 in 5 / 20% AEP; 1 in 20 / 5% AEP; 1 in 75 / 1.3% AEP; 1 in 100 / 1% AEP and 1 in 1000 / 0.1% AEP.

Model accuracy: Levels ± 250mm

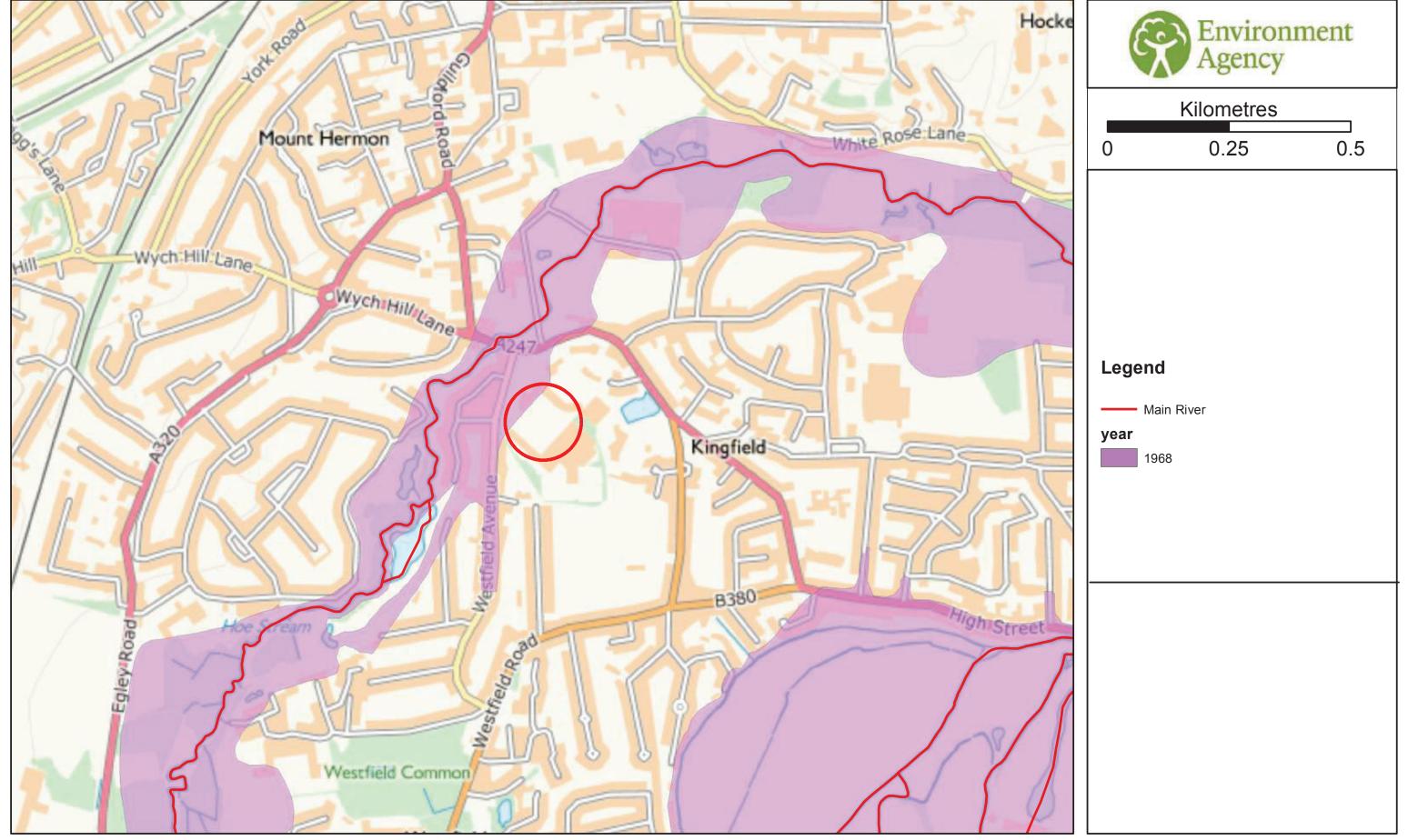
FRA Map centred on Woking Football Club Created on 25/02/2019 REF: THM_116387

Modelled in-channel flood flows and levels

THM_116387

The modelled flood levels and flows for the closest most appropriate model node points for your site that are within the river channel are provided below:

					F	lood Levels (mAOD)		
Node label	Model	Easting	Northing	20% AEP	5% AEP	1% AEP	1% AEP (+20% increase in flows)	0.1% AEP
06130MN 1.010D	Hoe Stream (Mayford to Wey confluence) 2014	500553	157612	23.77	23.87	24.01	24.21	24.42
06130MN_1.012	Hoe Stream (Mayford to Wey confluence) 2014	500528	157533	23.84	23.94	24.09	24.28	24.49
06130MN_1.014d	Hoe Stream (Mayford to Wey confluence) 2014	500456	157504	23.91	24.02	24.16	24.36	24.58
06130MN_1.016	Hoe Stream (Mayford to Wey confluence) 2014	500417	157457	23.90	24.01	24.16	24.36	24.58
06130MN_1.017	Hoe Stream (Mayford to Wey confluence) 2014	500327	157417	24.08	24.19	24.34	24.55	24.78
06130MN_1.019	Hoe Stream (Mayford to Wey confluence) 2014	500314	157298	24.30	24.38	24.52	24.70	24.92
06130MN_1.020	Hoe Stream (Mayford to Wey confluence) 2014	500322	157216	24.36	24.45	24.58	24.76	24.97


						Flood Flows (m3/s)		
Node label	Model	Easting	Northing	20% AEP	5% AEP	1% AEP	1% AEP (+20% increase in flows)	0.1% AEP
06130MN_1.010D	Hoe Stream (Mayford to Wey confluence) 2014	500553	157612	15.17	16.64	18.90	22.08	25.87
06130MN_1.012	Hoe Stream (Mayford to Wey confluence) 2014	500528	157533	12.77	14.29	16.74	20.67	25.64
06130MN_1.014d	Hoe Stream (Mayford to Wey confluence) 2014	500456	157504	16.31	18.55	22.08	27.42	33.92
06130MN_1.016	Hoe Stream (Mayford to Wey confluence) 2014	500417	157457	16.32	18.55	22.08	27.44	33.92
06130MN_1.017	Hoe Stream (Mayford to Wey confluence) 2014	500327	157417	11.85	12.24	12.93	14.12	15.47
06130MN_1.019	Hoe Stream (Mayford to Wey confluence) 2014	500314	157298	14.29	15.48	17.39	20.38	24.04
06130MN_1.020	Hoe Stream (Mayford to Wey confluence) 2014	500322	157216	8.91	9.20	10.17	11.63	13.67

Note:

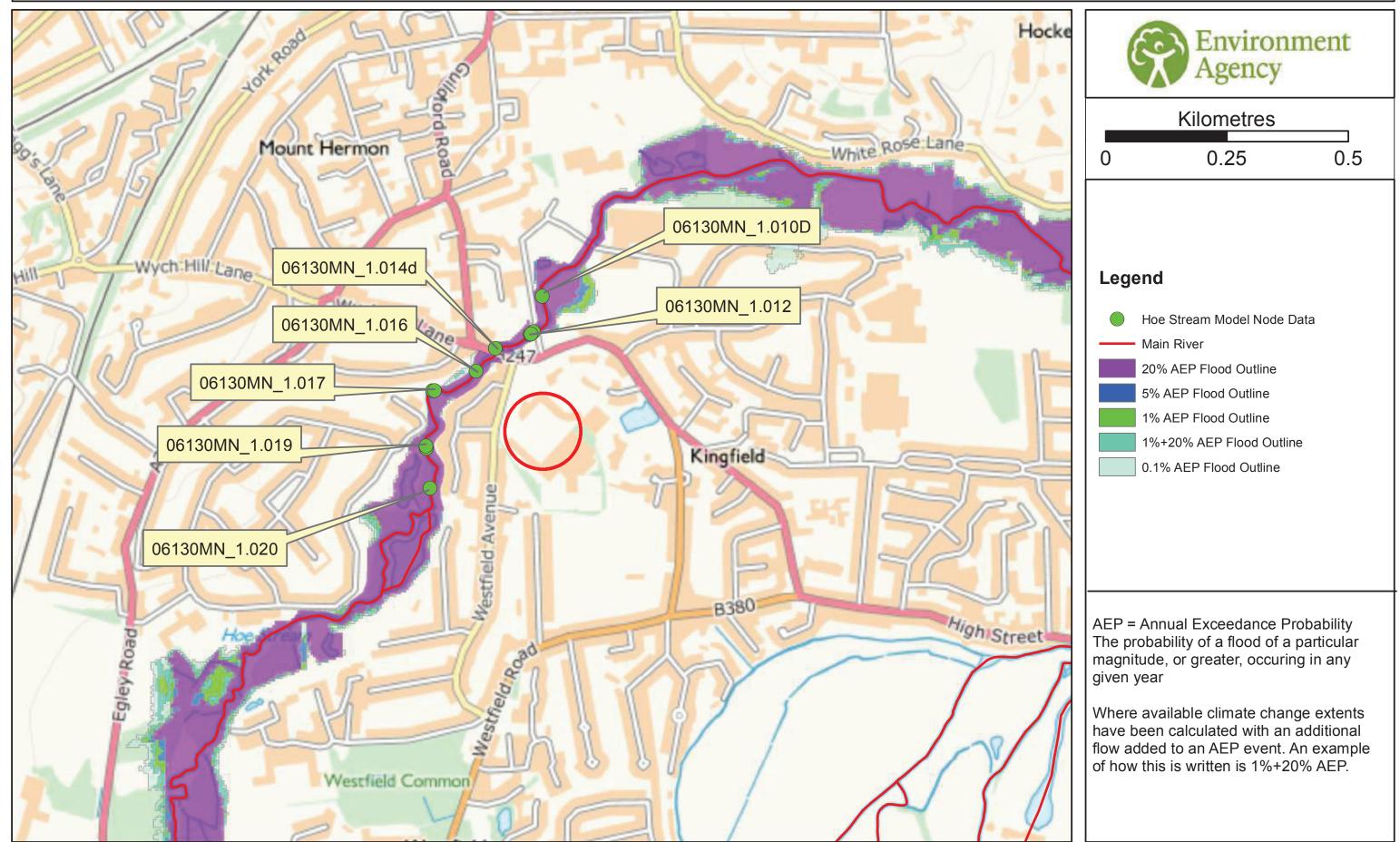
Due to changes in guidance on the allowances for climate change, the 20% increase in river flows should no longer to be used for development design purposes. The data included in this Product can be used for interpolation of levels as part of an intermediate level assessment.

For further advice on the new allowances please visit https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances

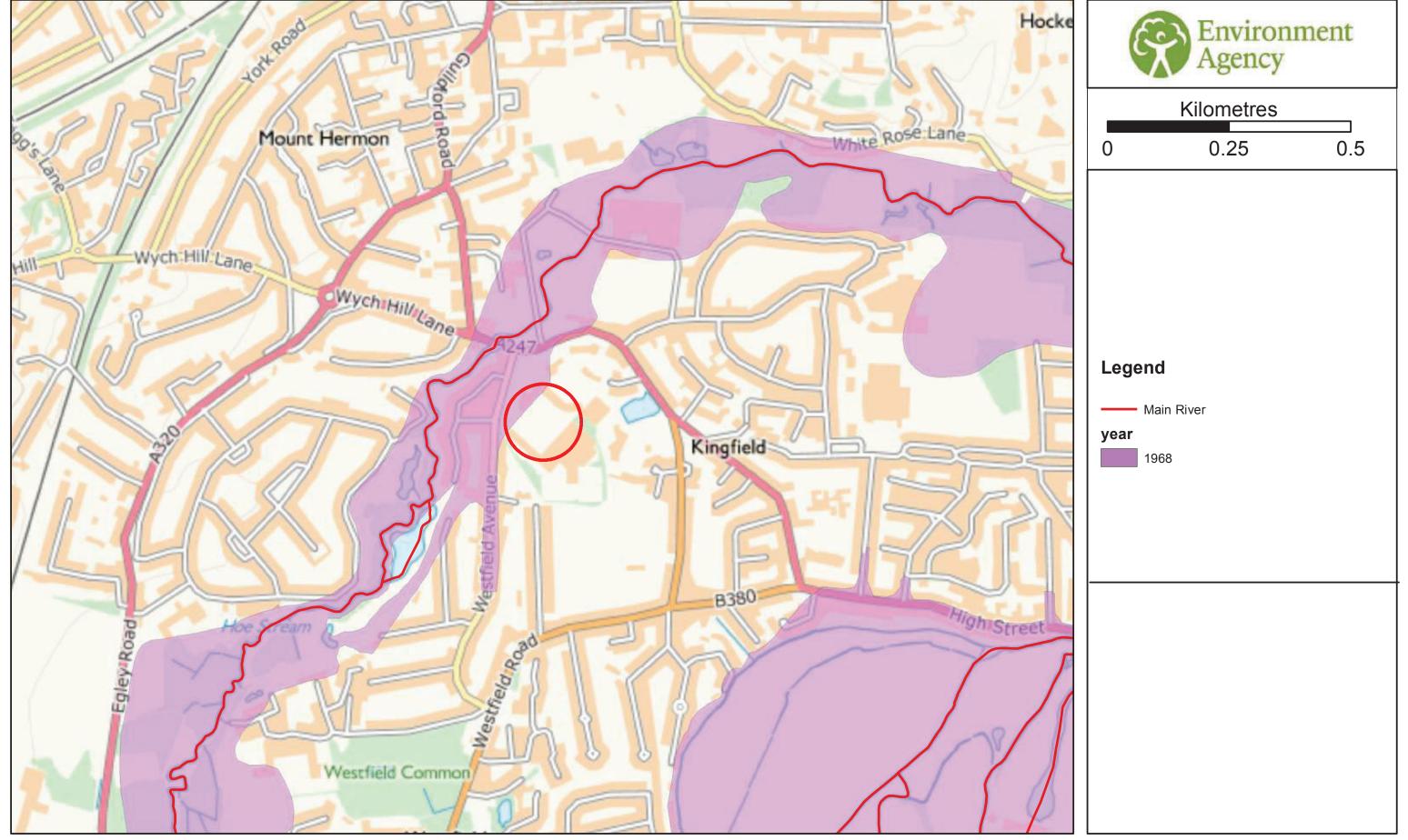
Historic Flood Map centred on Woking Football Club Created on 25/02/2019 REF: THM_116387

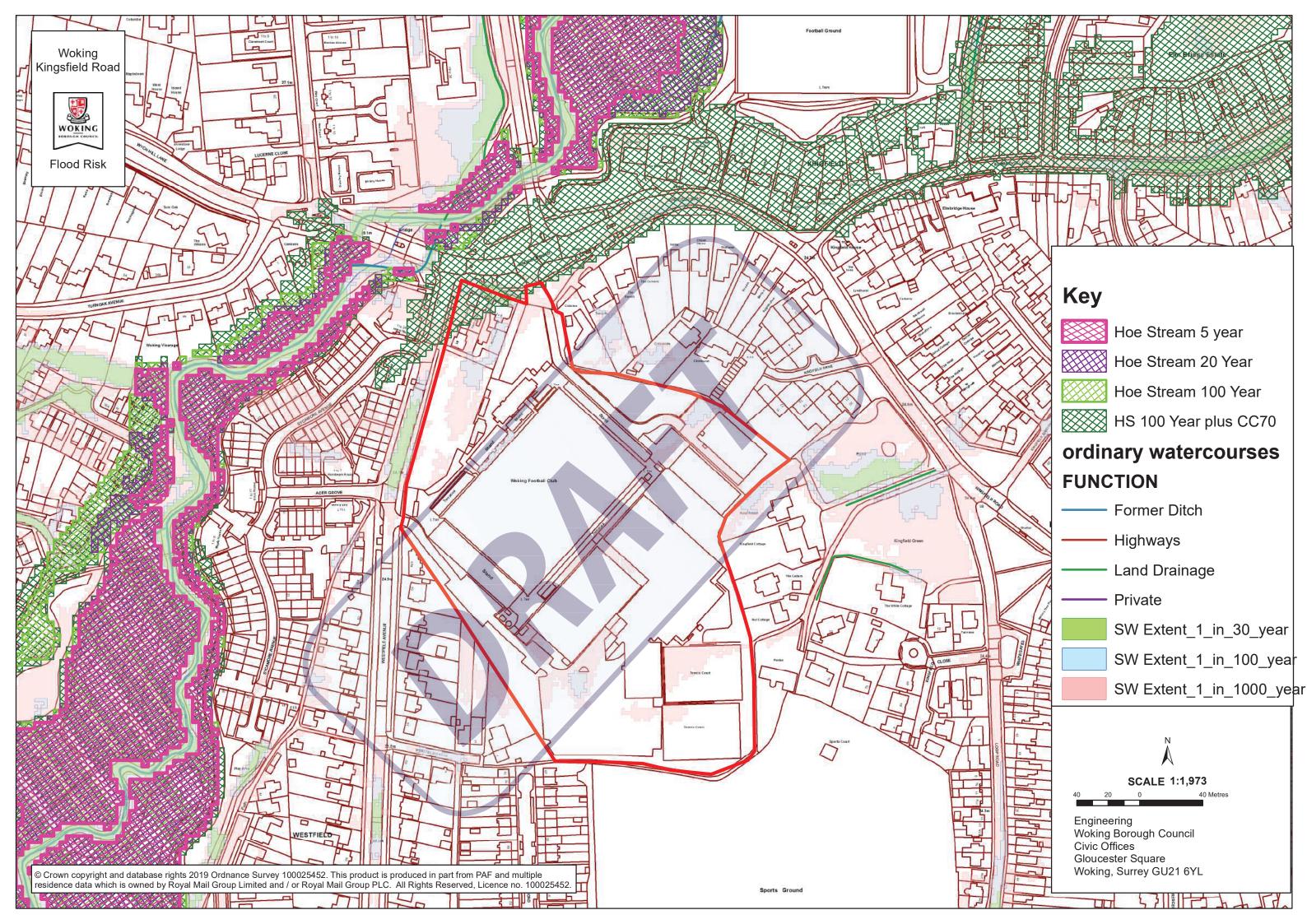
Historic flood data THM_116387

Our records show that the area of your site has been affected by flooding.


Information on the floods that have affected your site is provided in the table below:

Flood Event Code	Flood Event Name	Start Date	End Date	Source of Flooding	Cause of Flooding
EA0619680900220a	06SeptemberAutumn1968	01/01/1968	12/12/1968	main river	channel capacity exceeded (no raised defences)


Please note the Environment Agency maps flooding to land not individual properties. Floodplain extents are an indication of the geographical extent of a historic flood. They do not provide information regarding levels of individual properties, nor do they imply that a property has flooded internally.


Start and End Dates shown above may represent a wider range where the exact dates are not available.

FRA Map centred on Woking Football Club Created on 25/02/2019 REF: THM_116387

Historic Flood Map centred on Woking Football Club Created on 25/02/2019 REF: THM_116387

Melissa Seymour

From: Katherine Waters < Katherine.Waters@woking.gov.uk>

Sent: 06 August 2019 15:43 **To:** Melissa Seymour

Subject: RE: Hoe Stream Model Update

Afternoon Melissa,

I have just been sent the undefended levels as follows:

Defended water levels are in the Table below:

Return Period	Peak Water Level (mAOD)				
0100	24.71				
0100cc35	25.08				
0100cc70	25.35				

The Climate Change levels actually overtop the defence opposite the site which would increase the probability of a breach scenario occurring at this location as this is a soft embankment. In addition the 70% goes around the defence through Queen Elizabeth Way and up to wards the football club along Kingfield Road.

There cannot be a loss of flood storage for the climate change scenario and any changes in the flow routes the development causes must not affect other areas.

Kind Regards

Katherine Waters Drainage and Flood Risk Engineer

Woking Borough Council, Civic Offices, Gloucester Square, Woking, Surrey, GU21 6YL T: +44 (0)1483 743725 | www.woking.gov.uk

For general enquiries, please call Woking Borough Council's Contact Centre on 01483 755855

From: Melissa Seymour < Melissa.seymour@rma-environmental.co.uk >

Sent: 31 July 2019 11:48

To: Katherine Waters < Katherine. Waters@woking.gov.uk>

Subject: RE: Hoe Stream Model Update

Morning Katherine,

Would you be able to get back to me on the below approach and provide me with the draft Hoe stream modelling defended 100 year + 35% CC flood level and the defended 100 year + 70 CC flood level?

I would really appropriate it if you could get back to me on this this week as our deadline is fast approaching.

Many Thanks, Melissa

1

From: Melissa Seymour Sent: 16 July 2019 15:40

To: Katherine Waters < Katherine Waters < Katherine Waters@woking.gov.uk <a href="mailto:Cc: Rob Murdock < rob.murdock@rma-environmental.co.uk">Cc: Rob Murdock < rob.murdock@rma-environmental.co.uk

Subject: RE: Hoe Stream Model Update

Hi Katherine,

Thank you for providing us with the draft defended flood mapping and the draft undefended flood levels for the Woking FC site which are based on the new Hoe Stream draft flood modelling. We understand that given that this modelling is draft and is likely to be published in the near future, the draft results of this modelling need to be considered for the proposed planning application.

Following a review of this data and your meeting with Rob, it is proposed that the site will consider mitigation measures for the **defended 100 year + 35% CC event** and the **defended 100 year + 70 CC flood event**, based on the draft mapping you provided.

It is considered that the undefended flood scenarios are unlikely to occur and are a residual flood risk to the site. However, the undefended flood levels will be considered in terms of how they will impact the scheme and the safety of access/egress of future occupants on site.

It is important to note that each block is proposing car parking at semi-basement level and this ensures that all more vulnerable land uses (residential uses) will be located above both the defended and undefended flood levels providing an area of safe refuge during the unlikely event of a failure of the flood defences.

I welcome your comments on the above approach and I hope this approach is considered acceptable to the LLFA. Please if you have any queries on this, do not hesitate to get in touch.

Please would you also be able to provide us with the draft Hoe stream modelling **defended 100 year + 35% CC flood level** and the **defended 100 year + 70 CC flood level** for the site as we currently only have the draft mapping of these scenarios.

I look forward to hearing from you shortly.

Many thanks, Melissa

From: Katherine Waters < Katherine. Waters@woking.gov.uk >

Sent: 10 July 2019 17:05

To: Melissa Seymour < Melissa.seymour@rma-environmental.co.uk >

Cc: Rob Murdock <rob.murdock@rma-environmental.co.uk>

Subject: RE: Hoe Stream Model Update

Hi Melissa,

Can you let me know what your queries are and I'll see if I can get answers for you. The consultants time is paid for through the project and I need to ensure that the project costs do not go up with additional charges beyond that agreed. As you are aware as this would be additional work from the project scope the project would get the consultants hourly charge out rate for the additional time spent.

If there are any queries with the mapping and the levels the difference would be the levels provided are the undefended levels whilst the map I provided is the defended level. This is due to the fact the defence can be over top and breach opposite the site.

2

Please see below the water levels relevant to the Football Club Site. These are still draft as we are awaiting the EA to sign them off officially.

Kind Regards

Katherine Waters Drainage and Flood Risk Engineer

Woking Borough Council, Civic Offices, Gloucester Square, Woking, Surrey, GU21 6YL T: +44 (0)1483 743725 | www.woking.gov.uk

For general enquiries, please call Woking Borough Council's Contact Centre on 01483 755855

From: Matthew Savill Sent: 08 July 2019 16:36

To: Katherine Waters < Katherine.Waters@woking.gov.uk>

Subject: RE: Hoe Stream Model Update

Hi Katherine,

Requested water levels are found in the table below. These are taken from model node 1.016:

Return Period	Peak Water Level
0100	24.66
0100cc35	25.02
0100cc70	25.28
1000	25.09

Kind Regards

Matt

Matt Savill Senior Flood Risk Engineer

This transmission is intended for the named addressee only. It may contain sensitive material and be marked as CONFIDENTIAL and accordingly must not be disclosed to anyone other than the named addressee, unless authorisation is granted by the sender. If you are not the named addressee (or authorised to receive it for the addressee), you may not copy, use or disclose it to anyone else. If you have received this transmission in error, please notify the sender immediately. All Public Services Network(PSN) traffic may be subject to recording and/or monitoring in accordance with relevant legislation.

Woking Football Club Woking FC FRA

Appendix D: Drainage Strategy

Issue 5 20 RMA Environmental November 2019 RMA-C1947

PURPOSE

The purpose of this Design Statement is to describe how the surface water drainage strategy for the proposed redevelopment of the Woking Football Club site will manage runoff in a manner that will mitigate the risk of flooding and pollution to the environment.

SCOPE

This design addresses runoff from areas within the red line boundary for the planning application.

DESIGN CONSTRAINTS

A ground investigation has been carried out. A combination of high groundwater levels and low percolation rates indicates that infiltration will not be feasible. Refer to the main body of the report for a description of the ground investigations carried out at the site.

There is limited information on the drainage arrangements for the existing site. However, the topographic survey shows a significant proportion of the site draining to soakaway. Given the age of the development and the likely limitations on the performance of soakaways a precautionary approach to the likely rate of discharge from the site has been adopted and it is proposed to limit the peak rate of discharge from the site to the 30year greenfield rate.

DESIGN STANDARDS

The proposed surface water drainage system is to be designed to ensure that all runoff from the 100year rainfall event plus a 40% increase in rainfall intensity is managed in accordance with DEFRA's Technical Standards for Sustainable Drainage Systems.

DESIGN - STRATEGY

It is proposed to attenuate runoff prior to discharge to the public surface water sewer. Attenuation will be provided in:

- green roofs;
- the granular material beneath permeable paving;
- lined geocellular tanks.

The rate of discharge to the public sewer will be controlled by means of a Hydro-Brake.

The proposed drainage layout is shown on drawing SK001 in Appendix B.

DESIGN - DETAIL

Volumetric Control

The MicroDrainage software suite has been used to model the performance of the proposed drainage system. The model and simulation results are included in Appendix A.

Treatment Design

The pollution treatment requirements for the site have been established using the Simple Index Approach set out in Table 26.1 of the SUDS Manual.

Pollution hazard levels have been derived From Table 26.2 and are shown in the following table.

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydro- Carbons
Roads with more than 300 vehicle movements/day	Medium	0.7	0.6	0.7
Residential roofs	Very low	0.2	0.2	0.05

Table 1 - Pollution Hazard Indices

The following table shows how runoff from the above areas will be treated. The figure in brackets is the target level of treatment.

Land Use	Treatment	Total Suspended Solids (TSS)	Metals	Hydro- Carbons
Roads with more than 300 vehicle movements/day	Permeable paving	0.7 (0.7) OK	0.6 (0.6) OK	0.7 (0.7) OK
Residential roofs	Bioretention areas (i.e. rain gardens and tree pits)	0.2 (0.8) OK	0.2 (0.8) OK	0.05 (0.8) OK

Table 2 - Proposed SuDS Mitigation Indices

Comparing the pollution hazard indices in Table 1 with the mitigation indices in Table 2 indicates that the proposed treatment measures are appropriate for the site use.

Compliance with Technical Standards for Sustainable Drainage Systems

The following sections describe how the proposed surface water drainage system meets the requirements of the DEFRA document Non-Statutory Technical Standards for Sustainable Drainage Systems.

S1 Where the drainage system discharges to a surface water body that can accommodate uncontrolled surface water discharges without any impact on flood risk from that surface water body (e.g. the sea or a large estuary) the peak flow control standards (**S2** and **S3** below) and volume control technical standards (**S4** and **S6** below) need not apply

There are no water bodies in the vicinity of the proposed development that are capable of accommodating uncontrolled runoff without increasing flood risk.

S2 For greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event.

Not applicable – brownfield site.

\$3 For developments which were previously developed, the peak runoff rate from the development to any drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event must be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to redevelopment for that event.

Greenfield runoff rates for the existing site area have been estimated using the MicroDrainage software suite (see Appendix A) and are shown in the following table.

Return Period (years)	Runoff (I/s)
Qbar	16.86
1	14.33
30	38.21
100	53.79

Table 3 - Greenfield Runoff Rates for Entire Site

Drawing SK003 in Appendix B shows the drainage arrangements for the existing site. Although much of the site is shown to drain to soakaways there are a number of areas adjacent to Westfield Avenue which drain to the public surface water sewer. The runoff rates from these areas have been estimated from a simple MicroDrainage model and are summarised in the following table. Model printouts are included in Appendix A.

Return Period (years)	Runoff (I/s)
Qbar	-
1	24.70
30	56.70
100	67.10
100+40%	80.7

Table 4 – Estimate of Discharge Rates to the Public Sewer

The greenfield runoff rates from the remainder of the site have been estimated using the MicroDrainage software suite (see Appendix A) and are shown in the following table.

	•
Return Period (years)	Runoff (I/s)
Qbar	16.40
1	13.94
30	37.18
100	52.34

Table 5 – Greenfield Runoff Rates for Areas Not Draining to Public Sewer

In the absence of detailed information for the existing drainage system and the performance of the soakaways in particular (which are likely to have been designed to accommodate runoff for events up to only the 10year return period event), a precautionary approach to the estimation of existing runoff rates has been adopted. Rates have been estimated as the sum of the greenfield rate and the brownfield rate shown in Tables 4 and 5 above.

Return Period (years)	Runoff (I/s)				
Qbar	-				
1	38.64				
30	93.88				
100	119 44				

Table 6 - Estimate of Runoff Rates from the Existing Site

S4 Where reasonably practicable, for greenfield development, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event should never exceed the greenfield runoff volume for the same event.

Not applicable – brownfield site.

S5 Where reasonably practicable, for developments which have been previously developed, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.

Not practicable due to reduction in volume of runoff proposed to be disposed of by means of infiltration.

S6 Where it is not reasonably practicable to constrain the volume of runoff to any drain, sewer or surface water body in accordance with **S4** or **S5** above, the runoff volume must be discharged at a rate that does not adversely affect flood risk.

Without extensive testing of the existing drainage system it is not possible to estimate the volume of runoff from the existing site. However, it is likely that the soakaways have been designed to accommodate runoff from events up to only the 10year return period. Most of the runoff from more-extreme events is likely to flow overland to Westfield Avenue and the A427.

The drainage arrangements for the new development will limit runoff to approximately 80% of the 1year rate of runoff from the site. This is likely to be significantly less than existing runoff rates for storms in excess of the 1 in 15year return period, and will not adversely affect flood risk.

S7 The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur on any part of the site for a 1 in 30 year rainfall event.

The drainage system has been designed such that runoff from all events up to the 100year +40% will be stored below ground level. Refer to the MicroDrainage outputs in Appendix A.

S8 The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur during a 1 in 100 year rainfall event in any part of: a building (including a basement); or in any utility plant susceptible to water (e.g. pumping station or electricity substation) within the development.

See S7 above.

S9 The design of the site must ensure that, so far as is reasonably practicable, flows resulting from rainfall in excess of a 1 in 100 year rainfall event are managed in exceedance routes that minimise the risks to people and property.

Refer to Section 4.10 in the main body of the report.

\$10 Components must be designed to ensure structural integrity of the drainage system and any adjacent structures or infrastructure under anticipated loading conditions over the design life of the development taking into account the requirement for reasonable levels of maintenance.

Where practicable the drainage system will be located beyond the zone of influence of adjacent foundations. Where this is not practicable, foundations will be designed to allow for the replacement of the drainage system without the need for special support.

S11 The materials, including products, components, fittings or naturally

occurring materials, which are specified by the designer must be of a suitable nature and quality for their intended use.

The surface water system will be designed in accordance with the SuDS Manual. The design will allow for replacement of component parts without long-term detriment to the performance of the system.

S12 Pumping should only be used to facilitate drainage for those parts of the site where it is not reasonably practicable to drain water by gravity.

Runoff will generally be disposed of by means of gravity. The only exception will be the need for a small submersible pump to deal with any rain falling on the vehicular ramp down to the basement.

S13 The mode of construction of any communication with an existing sewer or drainage system must be such that the making of the communication would not be prejudicial to the structural integrity and functionality of the sewerage or drainage system.

Connections to the existing drainage system will be made only by appropriately qualified and licensed contractors.

S14 Damage to the drainage system resulting from associated construction activities must be minimised and must be rectified before the drainage system is considered to be completed.

See S13 above.

APPENDIX A

CALCULATIONS

- 1. Greenfield runoff rates
- 2. MicroDrainage printout for proposed drainage system 100year +40% rainfall event
- 3. MicroDrainage printout for existing drainage system 100year +40% rainfall event

1. Greenfield Runoff Rates

Pitman Associates Ltd		Page 1
South Lodge		
Exminster		
Devon EX6 8AT		Micco
Date 01/09/2019 16:27	Designed by Karl	Micro
SASSETS READED INCOME TO CONTRACT OF THE PROPERTY OF THE PROPE		Drainage
File	Checked by	
XP Solutions	Source Control 2019.1	
<u>IH 124</u>	Mean Annual Flood	
	Input	
Return Period (year		
	a) 50.000 Urban 0.000	
SAAR (m	m) 700 Region Number Region 6	
	Results 1/s	
	Results 1/5	
C C	BAR Rural 170.1	
C	BAR Urban 170.1	
	Q1 year 144.6	
	Q1 year 144.6	
	Q2 years 149.9	
	Q5 years 217.7	
	Q10 years 275.6	
	Q20 years 340.8	
	Q25 years 365.4	
	Q30 years 385.5 Q50 years 445.7	
	2100 years 542.7	
	200 years 637.9	
The state of the s	250 years 668.6	
The state of the s	.000 years 877.8	
1.000		

Pro-rata for total site area (4.956ha):

Qbar = 16.86l/s 1yr = 14.33l/s 30yr = 38.21l/s 100yr = 53.79l/s

Pro-rata for site area not draining to public sewer (4.822ha):

Qbar = 16.40l/s 1yr = 13.94l/s 30yr = 37.18l/s 100yr = 52.34l/s 2. MicroDrainage printout for proposed drainage system 100year +40% rainfall event

NB To account for the possibility of surcharge in the receiving public surface water sewer the outfall from the model has been surcharged to 23.02mAD, the soffit level at the point of connection.

Pitman Associates Ltd		Page 1
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	Dialilade
XP Solutions	Network 2019.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

« - Indicates pipe capacity < flow

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000 S1.001	72.000 68.000			0.057 0.119	4.00	0.0	0.600	0.020	○ →[↓]	300	Pipe/Conduit Cellular Storage	_
s2.000	77.000	0.200	385.0	0.213	4.00	0.0	0.600		0	300	Pipe/Conduit	•
s3.000	30.000	0.150	200.0	0.000	4.00	0.0	0.600		0	300	Pipe/Conduit	a
S4.000	30.000	0.150	200.0	0.238	4.00	0.0	0.600		0	300	Pipe/Conduit	a
S1.002	56.300	0.100	563.0	0.070	0.00	0.0		0.020	→[↓]		Cellular Storage	8
S5.000	30.000	0.300	100.0	0.000	4.00	0.0	0.600		0	300	Pipe/Conduit	8
S6.000	30.000	0.300	100.0	0.237	4.00	0.0	0.600		0	300	Pipe/Conduit	8
S7.000	18.000	0.300	60.0	0.080	4.00	0.0	0.600		0	300	Pipe/Conduit	&
s1.003	72.500	0.100	725.0	0.127	0.00	0.0		0.020	→[↓]		Cellular Storage	8

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S1.000 S1.001	75.00 75.00		24.000 23.700	0.057 0.176	0.0	0.0	0.0	1.01 1.18	71.4 3016.9	11.6 35.7	
S2.000	75.00	5.61	23.600	0.213	0.0	0.0	0.0	0.80	56.2	43.3	
s3.000	75.00	4.45	23.700	0.000	0.0	0.0	0.0	1.11	78.3	0.0	
S4.000	75.00	4.45	23.700	0.238	0.0	0.0	0.0	1.11	78.3	48.3	
S1.002	75.00	7.24	23.400	0.697	0.0	0.0	0.0	0.86	2857.4	141.6	
s5.000	75.00	4.32	23.750	0.000	0.0	0.0	0.0	1.57	111.1	0.0	
s6.000	75.00	4.32	23.750	0.237	0.0	0.0	0.0	1.57	111.1	48.1	
s7.000	75.00	4.15	23.750	0.080	0.0	0.0	0.0	2.03	143.7	16.2	
s1.003	75.00	8.84	23.300	1.141	0.0	0.0	0.0	0.76	2517.8	231.8	

©1982-2019 Innovyze

Pitman Associates Ltd

South Lodge
Exminster
Devon EX6 8AT

Date 30/09/2019 08:48
File FC Proposed SW - inc gr... Checked by

XP Solutions

Page 2

Micro
Drainage

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
S8.000	30.000	0.100	300.0	0.000	4.00	0.0	0.600		0	300	Pipe/Condui	•
S9.000	30.000	0.100	300.0	0.210	4.00	0.0	0.600		0	300	Pipe/Conduit	
s10.000	72.000	0.200	360.0	0.190	4.00	0.0	0.600		0	300	Pipe/Conduit	. 🔒
S1.004	72.500	0.100	725.0	0.112	0.00	0.0		0.020	→[↓]		Cellular Storage	• 🔴
S11.000	30.000	0.100	300.0	0.000	4.00	0.0	0.600		0	300	Pipe/Conduit	. 🔒
S12.000	30.000	0.100	300.0	0.254	4.00	0.0	0.600		0	300	Pipe/Conduit	. 🔒
s13.000	50.000	0.150	333.3	0.101	4.00	0.0	0.600		0	300	Pipe/Conduit	. 🔒
S1.005	24.500	0.050	490.0	0.049	0.00	0.0		0.020	→[↓]		Cellular Storage	• •
S14.000	30.000	0.100	300.0	0.000	4.00	0.0	0.600		0	300	Pipe/Conduit	
S15.000	30.000	0.100	300.0	0.181	4.00	0.0	0.600		0	300	Pipe/Conduit	
S16.000	49.000	0.200	245.0	0.018	4.00	0.0		0.020	→[↓]		Cellular Storage	• 🔒

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S8.000	75.00	4.55	23.450	0.000	0.0	0.0	0.0	0.90	63.8	0.0	
S9.000	75.00	4.55	23.450	0.210	0.0	0.0	0.0	0.90	63.8	42.7	
S10.000	75.00	5.46	23.550	0.190	0.0	0.0	0.0	0.82	58.2	38.6	
S1.004	75.00	10.44	23.200	1.653	0.0	0.0	0.0	0.76	2517.8	335.8	
S11.000	75.00	4.55	23.350	0.000	0.0	0.0	0.0	0.90	63.8	0.0	
S12.000	75.00	4.55	23.350	0.254	0.0	0.0	0.0	0.90	63.8	51.6	
S13.000	75.00	4.97	23.400	0.101	0.0	0.0	0.0	0.86	60.5	20.5	
S1.005	75.00	10.88	23.100	2.057	0.0	0.0	0.0	0.92	3064.5	417.8	
S14.000	75.00	4.55	23.300	0.000	0.0	0.0	0.0	0.90	63.8	0.0	
S15.000	75.00	4.55	23.300	0.181	0.0	0.0	0.0	0.90	63.8	36.8	
S16.000	75.00	4.79	24.000	0.018	0.0	0.0	0.0	1.04	2215.4	3.7	
	©1982-2019 Innovyze										

Pitman Associates Ltd		Page 3
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	Dialilade
XP Solutions	Network 2019.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ise (1/s)	k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
S16.001	17.000	0.100	170.0	0.037	0.00	0.0		0.020	\rightarrow [\downarrow]		Cellular Storage	₽ 🔒
S16.002	34.000	0.100	340.0	0.134	0.00	0.0		0.020	$\rightarrow [\ \downarrow\]$		Cellular Storage	
S16.003	33.000	0.150	220.0	0.052	0.00	0.0		0.020	$\rightarrow \left[\begin{array}{c} \downarrow \end{array} \right]$		Cellular Storage	
S16.004	99.000	0.250	396.0	0.082	0.00	0.0		0.020	$\rightarrow [\ \downarrow\]$		Cellular Storage	
												_
S17.000	50.000	0.200	250.0	0.800	4.00	0.0	0.600		0	450	Pipe/Condui	t 🔒
S17.001	50.000	1.000	50.0	0.000	0.00	0.0	0.600		0	150	Pipe/Condui	
												_
S1.006	56.000	0.100	560.0	0.142	0.00	0.0		0.020	$\rightarrow [\ \downarrow\]$		Cellular Storage	
S1.007	30.000	0.100	300.0	0.000	0.00	0.0	0.600		0	300	Pipe/Condui	t 🔓
												_
S18.000	30.000	0.500	60.0	0.000	4.00	0.0	0.600		0	150	Pipe/Condui	t 👸

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S16.001	75.00	5.00	23.800	0.055	0.0	0.0	0.0	1.32	3202.5	11.2
S16.002	75.00	5.59	23.700	0.189	0.0	0.0	0.0	0.96	2463.3	38.4
S16.003	75.00	6.04	23.600	0.241	0.0	0.0	0.0	1.22	3314.6	49.0
S16.004	75.00	7.79	23.450	0.323	0.0	0.0	0.0	0.94	2759.5	65.6
S17.000	75.00	4.65	24.500	0.800	0.0	0.0	0.0	1.28	203.8	162.5
S17.001	75.00	5.23	24.300	0.800	0.0	0.0	0.0	1.43	25.2«	162.5
S1.006	75.00	11.97	23.050	3.503	0.0	0.0	0.0	0.86	2866.3	711.5
S1.007	75.00	12.52	22.950	3.503	0.0	0.0	0.0	0.90	63.8«	711.5
S18.000	75.00	4.38	24.000	0.000	0.0	0.0	0.0	1.30	23.0	0.0

©1982-2019 Innovyze

Pitman Associates Ltd		Page 4
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Drainage
File FC Proposed SW - inc gr	Checked by	Dialilade
XP Solutions	Network 2019.1	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdro
S1	25.200	1.200	Open Manhole	1200	S1.000	24.000	300				
S2	25.200	1.500	Open Manhole	3000	S1.001	23.700		S1.000	23.700	300	
S2	25.200	1.600	Junction		S2.000	23.600	300				
s3	26.000	2.300	Open Manhole	1200	s3.000	23.700	300				
S4	26.000	2.300	Open Manhole	1200	S4.000	23.700	300				
S6	25.000	1.600	Open Manhole	3000	S1.002	23.400		S1.001	23.400		
								S2.000	23.400	300	
								s3.000	23.550	300	
								S4.000	23.550	300	
s7			-	1200	S5.000	23.750	300				
S8	26.000		_	1200	S6.000	23.750	300				
S9	25.000		Open Manhole	1200	S7.000	23.750	300				
S10	25.000	1.700	Open Manhole	3000	S1.003	23.300		S1.002	23.300		
								S5.000	23.450	300	
								S6.000	23.450	300	
								S7.000	23.450	300	
	26.000		-	1200	S8.000	23.450	300				
	26.000		_ =	1200	S9.000	23.450	300				
	25.000	1.450	Open Manhole	1200	S10.000	23.550	300				
S14	25.000	1.800	Open Manhole	3000	S1.004	23.200		S1.003	23.200		
								S8.000	23.350	300	
								S9.000	23.350	300	
21.5	0.000	0 650		1000	211 000	00.050	200	S10.000	23.350	300	
			Open Manhole		S11.000	23.350	300				
	26.000		_		S12.000	23.350	300				
	25.000		-	1200		23.400	300	a1 004	00 100		
S18	25.000	1.900	Open Manhole	3000	S1.005	23.100		S1.004	23.100	200	
								S11.000	23.250	300	
								S12.000	23.250	300	
¢10	26.000	2 700	Open Manhole	1200	S14.000	23.300	300	S13.000	23.250	300	
	26.000		_ =	1200		23.300	300				
			Open Manhole		\$15.000	24.000	300				
			Open Manhole		\$16.001	23.800		S16.000	23.800		
			Open Manhole		\$16.002	23.700		\$16.000	23.700		
			Open Manhole		\$16.003	23.600		\$16.001	23.600		
			Open Manhole		\$16.004	23.450		\$16.002 \$16.003	23.450		
			Open Manhole	1350		24.500	450	310.003	23.430		
				©1982-	2019 In	novyze					

Pitman Associates Ltd		Page 5
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	Dialilade
XP Solutions	Network 2019.1	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S27	25.000	0.700	Open Manhole	1350	S17.001	24.300	150	S17.000	24.300	450	
S28	25.000	1.950	Open Manhole	3000	S1.006	23.050		S1.005	23.050		
								S14.000	23.200	300	
								S15.000	23.200	300	
								S16.004	23.200		100
								S17.001	23.300	150	
S29	24.600	1.650	Open Manhole	3000	S1.007	22.950	300	S1.006	22.950		
S	24.600	1.750	Open Manhole	0		OUTFALL		S1.007	22.850	300	
S30	24.600	0.600	Open Manhole	1200	S18.000	24.000	150				
S	24.600	1.100	Open Manhole	0		OUTFALL		S18.000	23.500	150	

No coordinates have been specified, layout information cannot be produced.

©1982-2019 Innovyze

Pitman Associates Ltd		Page 6
South Lodge		
Exminster		The second second
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	Diamage
XP Solutions	Network 2019.1	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	_		MH Name			-	MH Connection	MH DIAM., L*W (mm)
S1.000 S1.001							Open Manhole Open Manhole	
S2.000	0	300	S2	25.200	23.600	1.300	Junction	
s3.000	0	300	s3	26.000	23.700	2.000	Open Manhole	1200
S4.000	0	300	S4	26.000	23.700	2.000	Open Manhole	1200
S1.002	→[↓]		S6	25.000	23.400	0.199	Open Manhole	3000
S5.000	0	300	s7	26.000	23.750	1.950	Open Manhole	1200
s6.000	0	300	S8	26.000	23.750	1.950	Open Manhole	1200
S7.000	0	300	S9	25.000	23.750	0.950	Open Manhole	1200
S1.003	$\rightarrow[\downarrow]$		S10	25.000	23.300	0.299	Open Manhole	3000
S8.000	0	300	S11	26.000	23.450	2.250	Open Manhole	1200

Downstream Manhole

	PN	_	Slope (1:X)				D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
		72.000 68.000			25.200 25.000			Open Manhole Open Manhole	3000 3000
S	2.000	77.000	385.0	s6	25.000	23.400	1.300	Open Manhole	3000
S	3.000	30.000	200.0	s6	25.000	23.550	1.150	Open Manhole	3000
S	4.000	30.000	200.0	s6	25.000	23.550	1.150	Open Manhole	3000
S	1.002	56.300	563.0	S10	25.000	23.300	0.299	Open Manhole	3000
S	5.000	30.000	100.0	S10	25.000	23.450	1.250	Open Manhole	3000
S	6.000	30.000	100.0	S10	25.000	23.450	1.250	Open Manhole	3000
S	7.000	18.000	60.0	S10	25.000	23.450	1.250	Open Manhole	3000
S	1.003	72.500	725.0	S14	25.000	23.200	0.399	Open Manhole	3000
S	8.000	30.000	300.0	S14	25.000	23.350	1.350	Open Manhole	3000

Pitman Associates Ltd		Page 7
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	Diamage
XP Solutions	Network 2019.1	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	_	Diam (mm)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
s9.000	0	300	S12	26.000	23.450	2.250	Open Manhole	1200
S10.000	0	300	S13	25.000	23.550	1.150	Open Manhole	1200
S1.004	→[↓]		S14	25.000	23.200	0.399	Open Manhole	3000
S11.000	0	300	S15	26.000	23.350	2.350	Open Manhole	1200
S12.000	0	300	S16	26.000	23.350	2.350	Open Manhole	1200
S13.000	0	300	S17	25.000	23.400	1.300	Open Manhole	1200
S1.005	→[↓]		S18	25.000	23.100	0.499	Open Manhole	3000
S14.000	0	300	S19	26.000	23.300	2.400	Open Manhole	1200
S15.000	0	300	S20	26.000	23.300	2.400	Open Manhole	1200
\$16.000 \$16.001 \$16.002	$\rightarrow [\ \downarrow\]$		S21 S22 S23	25.000 25.000 25.000	24.000 23.800 23.700	0.199	Open Manhole Open Manhole Open Manhole	3000

Downstream Manhole

<u>Downstream Manhole</u>											
PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)		MH DIAM., L*W (mm)			
s9.000	30.000	300.0	S14	25.000	23.350	1.350	Open Manhole	3000			
S10.000	72.000	360.0	S14	25.000	23.350	1.350	Open Manhole	3000			
S1.004	72.500	725.0	S18	25.000	23.100	0.499	Open Manhole	3000			
S11.000	30.000	300.0	S18	25.000	23.250	1.450	Open Manhole	3000			
S12.000	30.000	300.0	S18	25.000	23.250	1.450	Open Manhole	3000			
S13.000	50.000	333.3	S18	25.000	23.250	1.450	Open Manhole	3000			
S1.005	24.500	490.0	S28	25.000	23.050	0.549	Open Manhole	3000			
S14.000	30.000	300.0	S28	25.000	23.200	1.500	Open Manhole	3000			
S15.000	30.000	300.0	S28	25.000	23.200	1.500	Open Manhole	3000			
S16.000					23.800		Open Manhole				
S16.001 S16.002					23.700		Open Manhole Open Manhole				
	©1982-2019 Innovyze										
				@I 982-	ZUI9 II	ınovyze					

Pitman Associates Ltd

South Lodge
Exminster
Devon EX6 8AT

Date 30/09/2019 08:48
File FC Proposed SW - inc gr... Checked by

XP Solutions

Page 8

Micro
Drainage

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd Sect		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S16.003	$\rightarrow [\ \downarrow\]$		S24	25.000	23.600	0.199	Open Manhole	3000
S16.004	$\rightarrow [\ \downarrow\]$		S25	25.000	23.450	0.199	Open Manhole	3000
S17.000	0	450	S26	25.000	24.500	0.050	Open Manhole	1350
S17.001	0	150	S27	25.000	24.300	0.550	Open Manhole	1350
S1.006	$\rightarrow [\ \downarrow\]$		S28	25.000	23.050	0.549	Open Manhole	3000
S1.007	0	300	S29	24.600	22.950	1.350	Open Manhole	3000
S18.000	0	150	S30	24.600	24.000	0.450	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S16.003 S16.004			S25 S28	25.000 25.000	23.450 23.200		Open Manhole Open Manhole	3000 3000
S17.000 S17.001			S27 S28	25.000 25.000	24.300 23.300		Open Manhole Open Manhole	1350 3000
	56.000 30.000		S29 S	24.600 24.600	22.950 22.850		Open Manhole Open Manhole	3000 0
S18.000	30.000	60.0	S	24.600	23.500	0.950	Open Manhole	0

Surcharged Outfall Details for Storm

Outfall Outfall C. Level I. Level Min D,L W
Pipe Number Name (m) (m) I. Level (mm) (mm)

S1.007 S 24.600 22.850 0.000 0 0

Datum (m) 0.000 Offset (mins) 0

Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)
1	23.020	7	23.020	13	23.020	19	23.020	25	23.020	31	23.020
2	23.020	8	23.020	14	23.020	20	23.020	26	23.020	32	23.020
3	23.020	9	23.020	15	23.020	21	23.020	27	23.020	33	23.020
4	23.020	10	23.020	16	23.020	22	23.020	28	23.020	34	23.020
5	23.020	11	23.020	17	23.020	23	23.020	29	23.020	35	23.020
6	23.020	12	23.020	18	23.020	24	23.020	30	23.020	36	23.020

Pitman Associates Ltd		Page 9
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designado
File FC Proposed SW - inc gr	Checked by	Diamage
XP Solutions	Network 2019.1	

Time	Depth										
(mins)	(m)										
37	23.020	87	23.020	137	23.020	187	23.020	237	23.020	287	23.020
38	23.020	88	23.020	138	23.020	188	23.020	238	23.020	288	23.020
39	23.020	89	23.020	139	23.020	189	23.020	239	23.020	289	23.020
40	23.020	90	23.020	140	23.020	190	23.020	240	23.020	290	23.020
41	23.020	91	23.020	141	23.020	191	23.020	241	23.020	291	23.020
42	23.020	92	23.020	142	23.020	192	23.020	242	23.020	292	23.020
43	23.020	93	23.020	143	23.020	193	23.020	243	23.020	293	23.020
44	23.020	94	23.020	144	23.020	194	23.020	244	23.020	294	23.020
45	23.020	95	23.020	145	23.020	195	23.020	245	23.020	295	23.020
46	23.020	96	23.020	146	23.020	196	23.020	246	23.020	296	23.020
47	23.020	97	23.020	147	23.020	197	23.020	247	23.020	297	23.020
48	23.020	98	23.020	148	23.020	198	23.020	248	23.020	298	23.020
49	23.020	99	23.020	149	23.020	199	23.020	249	23.020	299	23.020
50	23.020	100	23.020	150	23.020		23.020	250	23.020	300	23.020
51	23.020	101	23.020	151	23.020	201	23.020	1	23.020	301	23.020
52	23.020		23.020	152	23.020	202	23.020	252	23.020	302	23.020
53	23.020	103	23.020	153	23.020	203	23.020	1	23.020	303	23.020
	23.020	104	23.020	154	23.020	204	23.020	254	23.020	304	23.020
	23.020		23.020		23.020		23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020	1	23.020	307	23.020
	23.020		23.020		23.020	208	23.020	1	23.020	308	23.020
	23.020		23.020		23.020		23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020				23.020		23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020		23.020	1	23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020				23.020	1	
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020	I	23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020	1	23.020	I	23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
		!		1		1				1	

©1982-2019 Innovyze

Pitman Associates Ltd		Page 10
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designado
File FC Proposed SW - inc gr	Checked by	Dialilade
XP Solutions	Network 2019.1	

Surcharged Outfall Details for Storm

Time	Depth										
(mins)	(m)										
	23.020	I	23.020	I	23.020		23.020		23.020		23.020
	23.020	l	23.020	1	23.020		23.020		23.020	1	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020	l .	23.020	1	23.020		23.020		23.020	1	23.020
	23.020	l .	23.020	1	23.020		23.020		23.020	l	23.020
	23.020	l .	23.020		23.020		23.020		23.020	1	23.020
	23.020	l	23.020	1	23.020		23.020		23.020	1	23.020
	23.020	I	23.020		23.020		23.020		23.020	l	23.020
	23.020	l	23.020	I	23.020		23.020		23.020		23.020
	23.020	I	23.020	I	23.020		23.020		23.020	1	23.020
	23.020	l	23.020	I	23.020		23.020		23.020	1	23.020
	23.020	I	23.020	1	23.020		23.020		23.020	1	23.020
	23.020	I	23.020		23.020		23.020		23.020		23.020
	23.020	I	23.020		23.020		23.020		23.020	1	23.020
	23.020	l .	23.020	1	23.020		23.020		23.020	l	23.020
	23.020	l	23.020	I	23.020		23.020		23.020	l	23.020
	23.020		23.020	1	23.020		23.020		23.020	l	23.020
	23.020	l .	23.020	1	23.020		23.020		23.020		23.020
356	23.020	I	23.020		23.020		23.020		23.020		23.020
357	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
359	23.020	409	23.020	459	23.020	509	23.020	559	23.020	609	23.020
360	23.020	410	23.020	460	23.020	510	23.020	560	23.020	610	23.020
361	23.020	411	23.020	461	23.020	511	23.020	561	23.020	611	23.020
	23.020		23.020		23.020		23.020		23.020	612	23.020
363	23.020	413	23.020	463	23.020	513	23.020	563	23.020	613	23.020
364	23.020	414	23.020	464	23.020		23.020	564	23.020	614	23.020
	23.020	l	23.020	1	23.020		23.020		23.020	1	23.020
	23.020	I	23.020	I	23.020		23.020		23.020		23.020
	23.020	I	23.020	I	23.020		23.020		23.020	l	23.020
	23.020	l	23.020	1	23.020		23.020		23.020	1	23.020
	23.020	I	23.020		23.020		23.020		23.020	l	23.020
	23.020	l .	23.020		23.020		23.020		23.020	l	23.020
	23.020	l	23.020	1	23.020		23.020		23.020	l	23.020
	23.020	I	23.020	I	23.020		23.020		23.020	1	23.020
	23.020	I	23.020	I	23.020		23.020		23.020	l	23.020
	23.020	l .	23.020		23.020		23.020		23.020		23.020
	23.020	l .	23.020		23.020		23.020		23.020		23.020
	23.020	l	23.020	1	23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020	l .	23.020	1	23.020		23.020		23.020	1	23.020
	23.020	l .	23.020	1	23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	1	23.020
	23.020	l .	23.020	1	23.020		23.020		23.020	l	23.020
	23.020		23.020	1	23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020	l .	23.020	1	23.020		23.020	585	23.020	l	23.020
386	23.020	436	23.020	486	23.020	536	23.020	586	23.020	636	23.020

Pitman Associates Ltd		Page 11
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designado
File FC Proposed SW - inc gr	Checked by	Diali lade
XP Solutions	Network 2019.1	

Time	Depth										
(mins)	(m)										
637	23.020	687	23.020	737	23.020	787	23.020	837	23.020	887	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
639	23.020	689	23.020	739	23.020	789	23.020	839	23.020	889	23.020
640	23.020	690	23.020	740	23.020	790	23.020	840	23.020	890	23.020
641	23.020	691	23.020	741	23.020	791	23.020	841	23.020	891	23.020
642	23.020	692	23.020	742	23.020	792	23.020	842	23.020	892	23.020
643	23.020	693	23.020	743	23.020	793	23.020	843	23.020	893	23.020
644	23.020	694	23.020	744	23.020	794	23.020	844	23.020	894	23.020
645	23.020	695	23.020	745	23.020	795	23.020	845	23.020	895	23.020
646	23.020	696	23.020	746	23.020	796	23.020	846	23.020	896	23.020
647	23.020	697	23.020	747	23.020	797	23.020	847	23.020	897	23.020
648	23.020	698	23.020	748	23.020	798	23.020	848	23.020	898	23.020
649	23.020	699	23.020	749	23.020	799	23.020	849	23.020	899	23.020
650	23.020	700	23.020	750	23.020	800	23.020	I	23.020	900	23.020
651	23.020	701	23.020		23.020	801	23.020	851	23.020	901	23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
653	23.020		23.020	753	23.020	803	23.020	853	23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
673	23.020	723	23.020	773	23.020	823	23.020	873	23.020	923	23.020
674	23.020	724	23.020	774	23.020	824	23.020	874	23.020	924	23.020
675	23.020	725	23.020	775	23.020	825	23.020	875	23.020	925	23.020
676	23.020	726	23.020	776	23.020	826	23.020	876	23.020	926	23.020
677	23.020	727	23.020	777	23.020	827	23.020	877	23.020	927	23.020
678	23.020	728	23.020	778	23.020	828	23.020	878	23.020	928	23.020
679	23.020	729	23.020	779	23.020	829	23.020	879	23.020	929	23.020
	23.020		23.020		23.020		23.020		23.020	930	23.020
	23.020		23.020		23.020		23.020	I	23.020	931	23.020
	23.020		23.020		23.020		23.020	I	23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
686	23.020	736	23.020	786	23.020	836	23.020	886	23.020	936	23.020

©1982-2019 Innovyze

Pitman Associates Ltd		Page 12
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	Diamage
XP Solutions	Network 2019.1	

Surcharged Outfall Details for Storm

Time	Depth	Time	Dept								
(mins)	(m)	(mins)	(m)								
	23.020		23.020		23.020	l	23.020		23.020	1187	23.0
	23.020		23.020		23.020		23.020		23.020		23.0
	23.020		23.020		23.020	l	23.020		23.020		23.0
	23.020		23.020		23.020	l	23.020		23.020		23.0
	23.020		23.020		23.020	l	23.020		23.020		23.0
	23.020		23.020		23.020		23.020		23.020	1192	
	23.020		23.020		23.020		23.020		23.020	1193	
	23.020		23.020		23.020		23.020		23.020	1194	
	23.020		23.020		23.020		23.020		23.020	1195	
	23.020		23.020		23.020	l	23.020		23.020	1196	
	23.020		23.020		23.020		23.020		23.020	1197	
	23.020		23.020		23.020	l	23.020		23.020	1198	
	23.020		23.020		23.020	l	23.020		23.020	1199	
	23.020		23.020		23.020	l	23.020		23.020	1200	
	23.020		23.020		23.020		23.020		23.020	1201	
	23.020		23.020		23.020	l	23.020		23.020	1202	
	23.020		23.020		23.020	l	23.020		23.020	1203	
	23.020		23.020		23.020		23.020		23.020	1204	
	23.020		23.020		23.020		23.020		23.020	1205	
	23.020		23.020		23.020	l	23.020		23.020	1206	
	23.020		23.020		23.020	l	23.020		23.020	1207	
	23.020		23.020		23.020		23.020		23.020	1208	
	23.020		23.020		23.020	l	23.020		23.020	1209	
	23.020		23.020		23.020		23.020		23.020	1210	
	23.020		23.020		23.020		23.020		23.020	1211	
	23.020		23.020		23.020		23.020		23.020	1212	
	23.020		23.020		23.020	l	23.020		23.020	1213	
	23.020		23.020		23.020	l	23.020		23.020	1214	
	23.020		23.020		23.020		23.020		23.020	1215	
	23.020		23.020		23.020	l	23.020		23.020	1216	
	23.020		23.020		23.020	l	23.020		23.020	1217	
	23.020		23.020		23.020		23.020		23.020	1218	
	23.020		23.020		23.020	l	23.020		23.020	1219	
	23.020		23.020		23.020	l	23.020		23.020	1220	
	23.020		23.020		23.020		23.020		23.020	1221	
	23.020		23.020		23.020	l	23.020		23.020	1222	
	23.020		23.020		23.020	l	23.020		23.020	1223	
	23.020		23.020		23.020		23.020		23.020	1224	
	23.020		23.020		23.020		23.020		23.020	1225	
	23.020		23.020		23.020		23.020		23.020	1226	
	23.020		23.020		23.020		23.020		23.020	1227	
	23.020		23.020		23.020	l	23.020		23.020	1228	
	23.020		23.020		23.020	l	23.020		23.020	1229	
	23.020		23.020		23.020		23.020		23.020	1230	
	23.020		23.020		23.020		23.020		23.020	1231	
	23.020		23.020		23.020		23.020		23.020	1232	
	23.020		23.020		23.020	l	23.020		23.020	1233	
	23.020		23.020		23.020	l	23.020		23.020	1234	
	23.020		23.020		23.020		23.020		23.020	1235	
006	23.020	1 1036	23.020	1 1086	23.020	l 1136	23.020	1186	23.020	1236	23.0

Pitman Associates Ltd		Page 13
South Lodge		
Exminster		
Devon EX6 8AT		Micco
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	Dialilade
XP Solutions	Network 2019 1	

Time	Depth										
(mins)	(m)										
1237	23.020	1287	23.020	1337	23.020	1387	23.020	1437	23.020	1487	23.020
	23.020		23.020		23.020	1	23.020	1	23.020	1	23.020
	23.020		23.020		23.020	1	23.020	1	23.020		23.020
	23.020		23.020	1340	23.020	l .	23.020	1	23.020	1	23.020
1241	23.020	1291	23.020	1341	23.020	1391	23.020	1441	23.020	1491	23.020
1242	23.020	1292	23.020	1342	23.020	1392	23.020	1442	23.020	1492	23.020
1243	23.020	1293	23.020	1343	23.020	1393	23.020	1443	23.020	1493	23.020
1244	23.020	1294	23.020	1344	23.020	1394	23.020	1444	23.020	1494	23.020
1245	23.020	1295	23.020	1345	23.020	1395	23.020	1445	23.020	1495	23.020
1246	23.020	1296	23.020	1346	23.020	1396	23.020	1446	23.020	1496	23.020
1247	23.020	1297	23.020	1347	23.020	1397	23.020	1447	23.020	1497	23.020
1248	23.020	1298	23.020	1348	23.020	1398	23.020	1448	23.020	1498	23.020
1249	23.020	1299	23.020	1349	23.020	1399	23.020	1449	23.020	1499	23.020
	23.020	1300	23.020	1350	23.020		23.020	1450	23.020	1500	23.020
1251	23.020	1301	23.020	1351	23.020	1401	23.020	1451	23.020	1501	23.020
1252	23.020	1302	23.020	1352	23.020	1402	23.020	1452	23.020	1502	23.020
1253	23.020		23.020	1353	23.020		23.020	1453	23.020	1503	23.020
1254	23.020	1304	23.020	1354	23.020	1404	23.020	1454	23.020	1504	23.020
1255	23.020	1305	23.020	1355	23.020	1405	23.020	1455	23.020	1505	23.020
1256	23.020	1306	23.020	1356	23.020	1406	23.020	1456	23.020	1506	23.020
1257	23.020	1307	23.020	1357	23.020	1407	23.020	1457	23.020	1507	23.020
	23.020	1308	23.020	1358	23.020	1408	23.020	1458	23.020	1508	23.020
1259	23.020	1309	23.020	1359	23.020	1409	23.020	1459	23.020	1509	23.020
1260	23.020	1310	23.020	1360	23.020	1410	23.020	1460	23.020	1510	23.020
	23.020		23.020		23.020	l .	23.020	1	23.020	1511	23.020
1262	23.020	1312	23.020	1362	23.020	1412	23.020	1462	23.020	1512	23.020
	23.020		23.020	1363	23.020	1413	23.020	1463	23.020	1513	23.020
1264	23.020	1314	23.020	1364	23.020	1414	23.020	1464	23.020	1514	23.020
	23.020		23.020		23.020	1	23.020	1	23.020	1	23.020
	23.020		23.020		23.020	1	23.020	1	23.020	1	23.020
	23.020		23.020		23.020	l .	23.020	1	23.020	1	23.020
	23.020		23.020		23.020	1	23.020	1	23.020	1	23.020
	23.020		23.020		23.020	1	23.020	1	23.020	1	23.020
	23.020		23.020		23.020	1	23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020	1	23.020	1	23.020
	23.020		23.020		23.020	1	23.020	1	23.020	1	23.020
	23.020		23.020		23.020	1	23.020	1	23.020	1	23.020
	23.020		23.020		23.020	l .	23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020	1	23.020	1	23.020
	23.020		23.020		23.020	1	23.020	1	23.020	1	23.020
	23.020		23.020		23.020	1	23.020	1	23.020	1	23.020
	23.020		23.020		23.020	l .	23.020		23.020	I	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020	1	23.020	1	23.020	I	23.020
	23.020		23.020		23.020	l .	23.020	1	23.020	1	23.020
	23.020		23.020		23.020		23.020	1	23.020		23.020
	23.020		23.020			1	23.020	1	23.020		23.020
	23.020		23.020		23.020	l .	23.020	1	23.020		23.020 23.020
	23.020		23.020		23.020		23.020		23.020	I	23.020
1286	23.020	1336	23.020	1386	23.020	1436	23.020	1486	23.020	1 1336	23.020

©1982-2019 Innovyze

Pitman Associates Ltd		Page 14
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	niali lade
XP Solutions	Network 2019.1	

Surcharged Outfall Details for Storm

Time	Depth	Time	Depth	Time	Depth	Time	Depth	Time	Depth	Time	Depth
(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020 23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
1553	23.020	1603	23.020		23.020		23.020	1753	23.020	1803	23.020
1554	23.020	1604	23.020	1654	23.020	1704	23.020	1754	23.020	1804	23.020
1555	23.020		23.020		23.020	1705	23.020		23.020	1805	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
1571	23.020	1621	23.020	1671	23.020	1721	23.020	1771	23.020	1821	23.020
1572	23.020	1622	23.020	1672	23.020	1722	23.020	1772	23.020	1822	23.020
	23.020		23.020		23.020		23.020		23.020	1823	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020 23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
		'		'			'			'	

Pitman Associates Ltd	Page 15	
South Lodge		
Exminster		
Devon EX6 8AT		Micco
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	Dialilade
XP Solutions	Network 2019 1	

Time	Depth										
(mins)	(m)										
1837	23.020	1887	23.020	1937	23.020	1987	23.020	2037	23.020	2087	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
1000	20.020	1 1900	20.020	1 1200	20.020	2000	20.020	2000	20.020	1 2130	20.02

©1982-2019 Innovyze

Pitman Associates Ltd	Page 16	
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	Diamage
XP Solutions	Network 2019.1	

Surcharged Outfall Details for Storm

Time	Depth	Time	Depth	Time	Depth	Time	Depth	Time	Depth	Time	Depth
(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020 23.020		23.020		23.020	1	23.020 23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	1	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
2151	23.020	2201	23.020	2251	23.020	2301	23.020	2351	23.020	2401	23.020
2152	23.020	2202	23.020	2252	23.020	2302	23.020	2352	23.020	2402	23.020
2153	23.020	2203	23.020	2253	23.020	2303	23.020	2353	23.020	2403	23.020
2154	23.020	2204	23.020		23.020	2304	23.020		23.020	2404	23.020
	23.020		23.020		23.020	2305	23.020		23.020	2405	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	1	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020 23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	1	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	1	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
2171	23.020	2221	23.020	2271	23.020	2321	23.020	2371	23.020	2421	23.020
2172	23.020	2222	23.020	2272	23.020	2322	23.020	2372	23.020		23.020
2173	23.020		23.020	2273	23.020		23.020	2373	23.020	2423	23.020
	23.020		23.020		23.020		23.020	2374	23.020	2424	23.020
	23.020		23.020		23.020		23.020		23.020	1	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	1	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020		23.020 23.020		23.020		23.020	1	23.020 23.020
	23.020		23.020		23.020		23.020		23.020	l	23.020
	23.020		23.020		23.020		23.020		23.020	1	23.020
2100		1 2200	20.020	1 2200		1 2330		1 2000	20.020	1 2100	_0.020

Pitman Associates Ltd		Page 17
South Lodge		
Exminster		The same of
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	Diamage
XP Solutions	Network 2019.1	

Time	Depth	Time	Depth								
(mins)	(m)	(mins)	(m)								
2437	23.020	2487	23.020	2537	23.020	2587	23.020	2637	23.020	2687	23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
	23.020		23.020		23.020		23.020		23.020		23.02
2400	23.020	2000	23.020	2000	23.020	2030	23.020	2000	23.020	2/30	20.02

©1982-2019 Innovyze

Pitman Associates Ltd		Page 18
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	niamage
XP Solutions	Network 2019 1	

Surcharged Outfall Details for Storm

Time	Depth										
(mins)	(m)										
0727	02 000	07.61	02 000	0705	00 000	0000	02 000	0000	00 000	0057	02 000
	23.020		23.020		23.020		23.020		23.020		23.020
			23.020	2786	23.020	2810	23.020		23.020	2858	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020	2788	23.020		23.020	2836	23.020	2860	23.020
	23.020	2765	23.020	2789	23.020		23.020	2837	23.020	2861	23.020
2742	23.020	2766	23.020	2790	23.020	2814	23.020	2838	23.020	2862	23.020
2743	23.020	2767	23.020	2791	23.020	2815	23.020	2839	23.020	2863	23.020
2744	23.020	2768	23.020	2792	23.020	2816	23.020	2840	23.020	2864	23.020
2745	23.020	2769	23.020	2793	23.020	2817	23.020	2841	23.020	2865	23.020
2746	23.020	2770	23.020	2794	23.020	2818	23.020	2842	23.020	2866	23.020
2747	23.020	2771	23.020	2795	23.020	2819	23.020	2843	23.020	2867	23.020
2748	23.020	2772	23.020	2796	23.020	2820	23.020	2844	23.020	2868	23.020
2749	23.020	2773	23.020	2797	23.020	2821	23.020	2845	23.020	2869	23.020
2750	23.020	2774	23.020	2798	23.020	2822	23.020	2846	23.020	2870	23.020
2751	23.020	2775	23.020	2799	23.020	2823	23.020	2847	23.020	2871	23.020
2752	23.020	2776	23.020	2800	23.020	2824	23.020	2848	23.020	2872	23.020
2753	23.020	2777	23.020	2801	23.020	2825	23.020	2849	23.020	2873	23.020
2754	23.020	2778	23.020	2802	23.020	2826	23.020	2850	23.020	2874	23.020
2755	23.020	2779	23.020	2803	23.020	2827	23.020		23.020	2875	23.020
2756	23.020	2780	23.020	2804	23.020	2828	23.020	2852	23.020	2876	23.020
	23.020		23.020		23.020		23.020		23.020		23.020
	23.020		23.020	1	23.020	2830	23.020		23.020	2878	23.020
	23.020		23.020	2807	23.020		23.020		23.020		23.020
	23.020		23.020	2808	23.020		23.020	2856	23.020	2880	
2,00	20.020	2,04	20.020	1 2000	20.020	1 2002	20.020	2000	20.020	2000	20.020

Free Flowing Outfall Details for Storm

Outfall	Outfall	C. Level	I. Level	Min	D,L	W
Pipe Number	Name	(m)	(m)	I. Level	(mm)	(mm)
				(m)		
S18.000	S	24.600	23.500	0.000	0	0

Pitman Associates Ltd		Page 19
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	niamade
XP Solutions	Network 2019.1	

Online Controls for Storm

Hydro-Brake® Optimum Manhole: S29, DS/PN: S1.007, Volume (m³): 188.1

Unit Reference	MD-SHE-0223-3000-2000-3000
Design Head (m)	2.000
Design Flow (1/s)	30.0
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	223
Invert Level (m)	22.950
Minimum Outlet Pipe Diameter (mm)	300
Suggested Manhole Diameter (mm)	1800

Control Points Head (m) Flow (1/s)

Design Po	oint (0	Calcul	Lated)	2	2.000	30.0
		Flush	n-Flo™		0.586	30.0
		Kicl	c-Flo®		1.268	24.1
Mean Flow	v over	Head	Range		-	26.0

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flow	v (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	7.5	1.200	25.7	3.000	26.4	7.000	54.9
0.100	7.5	1.200	23./	3.000	36.4	7.000	54.9
0.200	22.0	1.400	25.3	3.500	39.2	7.500	56.7
0.300	27.8	1.600	26.9	4.000	41.8	8.000	58.5
0.400	29.2	1.800	28.5	4.500	44.3	8.500	60.3
0.500	29.8	2.000	30.0	5.000	46.6	9.000	62.0
0.600	30.0	2.200	31.4	5.500	48.8	9.500	63.6
0.800	29.5	2.400	32.7	6.000	50.9		
1.000	28.4	2.600	34.0	6.500	52.9		

©1982-2019 Innovyze

Pitman Associates Ltd		Page 20
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designado
File FC Proposed SW - inc gr	Checked by	Diamage
XP Solutions	Network 2019.1	

10 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Volumetric Runoff Coeff 0.750
Areal Reduction Factor 1.000
Hot Start (mins)
O
MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm)

Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 12 Number of Online Controls 1 Number of Time/Area Diagrams 7 Number of Offline Controls 0 Number of Real Time Controls 0

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF
Analysis Timestep Fine Inertia Status OFF
DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 10, 30, 100
Climate Change (%) 0, 0, 40

PN	US/MH Name	St	orm		Climate Change		(X) arge	First (Z) Overflow	Overflow Act.
S1.000	S1	15	Winter	10	+0%				
S1.001	S2	15	Winter	10	+0%				
S2.000	S2	15	Winter	10	+0%				
s3.000	S3	30	Winter	10	+0%				
S4.000	S4	15	Winter	10	+0%	30/15	Summer		
S1.002	S6	15	Winter	10	+0%				
S5.000	S7	30	Winter	10	+0%				
S6.000	S8	15	Winter	10	+0%	100/15	Summer		
S7.000	S9	15	Winter	10	+0%				
S1.003	S10	360	Winter	10	+0%				
S8.000	S11	30	Winter	10	+0%	100/360	Winter		
S9.000	S12	15	Summer	10	+0%	30/15	Summer		
S10.000	S13	15	Winter	10	+0%	30/15	Summer		
S1.004	S14	360	Winter	10	+0%				
S11.000	S15	30	Winter	10	+0%	100/120	Winter		
S12.000	S16	15	Winter	10	+0%	10/15	Summer		
S13.000	S17	15	Winter	10	+0%	100/15	Summer		
S1.005	S18	360	Winter	10	+0%				
S14.000	S19	30	Winter	10	+0%	100/120	Summer		
S15.000	S20	15	Winter	10	+0%	30/15	Summer		
S16.000	S21	10080	Winter	10	+0%				
S16.001	S22	15	Summer	10	+0%				
S16.002	S23	15	Winter	10	+0%				
S16.003	S24	15	Winter	10	+0%				
	<u> </u>			©1	982-201	.9 Innov	yze		

Pitman Associates Ltd		Page 21
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	Dialilade
XP Solutions	Network 2019.1	

$\frac{\text{10 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Storm}}$

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1.000	S1	24.099	-0.201	0.000	0.24		16.4	OK	
S1.001		23.704	-1.097	0.000	0.02		48.5	OK	
S2.000		23.900	0.000	0.000	0.99			SURCHARGED*	
S3.000		23.785	-0.215	0.000	0.18		12.7	OK	
S4.000		23.934	-0.066	0.000	0.96		68.6	OK	
S1.002		23.450	-1.351	0.000	0.07		172.2	OK	
S5.000		23.800	-0.250	0.000	0.06		6.5	OK	
S6.000		23.931	-0.119	0.000	0.68		68.4	OK	
S7.000		23.837	-0.213	0.000	0.19		23.1	OK	
S1.003		23.361	-1.340	0.000	0.02		39.2	OK	
S8.000		23.517	-0.233	0.000	0.11		6.6	OK	
s9.000		23.750	0.000	0.000	1.03		59.5	OK	
S10.000	S13	23.787	-0.063	0.000	0.98		54.6	OK	
S1.004	S14	23.361	-1.240	0.000	0.02		36.0	OK	
S11.000	S15	23.454	-0.196	0.000	0.26		15.0	OK	
S12.000	S16	23.695	0.045	0.000	1.26		72.8	SURCHARGED	
S13.000	S17	23.552	-0.148	0.000	0.51		29.1	OK	
S1.005	S18	23.361	-1.140	0.000	0.02		43.3	OK	
S14.000	S19	23.373	-0.227	0.000	0.14		7.9	OK	
S15.000	S20	23.522	-0.078	0.000	0.90		52.2	OK	
S16.000	S21	24.001	-0.800	0.000	0.00		0.1	OK	
S16.001	S22	23.802	-0.999	0.000	0.01		15.8	OK	
S16.002	S23	23.711	-1.090	0.000	0.02		53.6	OK	
S16.003	S24	23.607	-1.194	0.000	0.02		67.4	OK	

©1982-2019 Innovyze

Pitman Associates Ltd		Page 22
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	nian laye
XP Solutions	Network 2019.1	

10 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Stor			Climate Change	First (X Surcharc	•	 First (Z) Overflow	Overflow Act.	Water Level (m)
S16.004	S25	15 Wi	nter	10	+0%					23.457
S17.000	S26	60 Wi:	nter	10	+0%					24.662
S17.001	S27	2160 Wi	nter	10	+0%					24.330
S1.006	S28	360 Wi	nter	10	+0%					23.362
S1.007	S29	360 Wi	nter	10	+0%	10/15 Win	ter			23.363
S18.000	S30	360 Wi	nter	10	+0%					24.000

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S16.004	S2.5	-1.344	0.000	0.03		84.1	OK	
S17.000	S26	-0.288	0.000	0.03				
						52.1	OK	
S17.001	S27	-0.120	0.000	0.09		2.1	OK	
S1.006	S28	-1.089	0.000	0.02		40.1	OK	
S1.007	S29	0.113	0.000	0.48		27.8	SURCHARGED	
S18.000	S30	-0.150	0.000	0.00		0.0	OK	

Pitman Associates Ltd	Page 23	
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	Dialilade
XP Solutions	Network 2019.1	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

volumetric Runoff Coeff 0.750 Foul Sewage per hectare (1/s) 0.000
Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.000
Headloss Coeff (Global) 0.500 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

> Number of Input Hydrographs 0 Number of Storage Structures 12 Number of Online Controls 1 Number of Time/Area Diagrams 7 Number of Offline Controls 0 Number of Real Time Controls 0

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080

Return Period(s) (years) 10, 30, 100 Climate Change (%) 0, 0, 40

	US/MH			Return	Climate	First	(X)	First (Y)	First (Z)	Overflow
PN	Name	S	torm	Period	Change	Surch	arge	Flood	Overflow	Act.
S1.000	S1	15	Winter	30	+0%					
S1.001	S2	15	Winter	30	+0%					
S2.000	S2	15	Winter	30	+0%					
s3.000	s3	30	Winter	30	+0%					
S4.000	S4	15	Winter	30	+0%	30/15	Summer			
S1.002	S6	15	Winter	30	+0%					
S5.000	s7	30	Winter	30	+0%					
S6.000	S8	15	Winter	30	+0%	100/15	Summer			
S7.000	S9	15	Winter	30	+0%					
S1.003	S10	240	Winter	30	+0%					
S8.000	S11	30	Winter	30	+0%	100/360	Winter			
S9.000	S12	15	Winter	30	+0%	30/15	Summer			
S10.000	S13	15	Winter	30	+0%	30/15	Summer			
S1.004	S14	240	Winter	30	+0%					
S11.000	S15	30	Winter	30	+0%	100/120	Winter			
S12.000	S16	15	Winter	30	+0%	10/15	Summer			
S13.000	S17	15	Winter	30	+0%	100/15	Summer			
S1.005	S18	240	Winter	30	+0%					
S14.000	S19	240	Winter	30	+0%	100/120	Summer			
S15.000	S20	15	Winter	30	+0%	30/15	Summer			
S16.000	S21	8640	Winter	30	+0%					
S16.001	S22	15	Summer	30	+0%					
S16.002	S23	15	Winter	30	+0%					
S16.003	S24	15	Winter	30	+0%					
				©2	1982-20	19 Inno	vyze			

Pitman Associates Ltd	Page 24	
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	Diali laye
XP Solutions	Network 2019.1	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name		Surcharged Depth (m)			Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000		24.113	-0.187	0.000	0.30		20.9	OK	
S1.001		23.705	-1.096	0.000	0.02		59.9	OK	
S2.000		23.900	0.000	0.000	1.23			SURCHARGED*	
s3.000		23.799	-0.201	0.000	0.24		16.8	OK	
S4.000		24.060	0.060	0.000	1.21		86.3	SURCHARGED	
S1.002	S6	23.462	-1.339	0.000	0.08		215.4	OK	
\$5.000		23.809	-0.241	0.000	0.09		8.7	OK	
S6.000	S8	23.965	-0.085	0.000	0.86		86.7	OK	
S7.000	S9	23.849	-0.201	0.000	0.24		29.3	OK	
S1.003	S10	23.418	-1.283	0.000	0.03		59.9	OK	
S8.000	S11	23.527	-0.223	0.000	0.15		8.7	OK	
\$9.000	S12	23.811	0.061	0.000	1.32		76.4	SURCHARGED	
S10.000	S13	23.941	0.091	0.000	1.21		67.5	SURCHARGED	
S1.004	S14	23.419	-1.182	0.000	0.02		51.0	OK	
S11.000	S15	23.472	-0.178	0.000	0.34		20.0	OK	
S12.000	S16	23.792	0.142	0.000	1.58		91.9	SURCHARGED	
S13.000	S17	23.576	-0.124	0.000	0.65		37.0	OK	
S1.005	S18	23.421	-1.080	0.000	0.03		67.0	OK	
S14.000	S19	23.425	-0.175	0.000	0.10		5.6	OK	
S15.000	S20	23.616	0.016	0.000	1.13		65.7	SURCHARGED	
S16.000	S21	24.001	-0.800	0.000	0.00		0.1	OK	
S16.001	S22	23.803	-0.998	0.000	0.01		20.1	OK	
S16.002	S23	23.714	-1.087	0.000	0.03		68.0	OK	
S16.003	S24	23.609	-1.192	0.000	0.03		85.6	OK	

Pitman Associates Ltd		Page 25
South Lodge		
Exminster		-
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	niamade
XP Solutions	Network 2019.1	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	St	torm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S16.004	S25	15	Winter	30	+0%					23.459
S17.000	S26	30	Winter	30	+0%					24.688
S17.001	S27	1440	Winter	30	+0%					24.336
S1.006	S28	240	Winter	30	+0%					23.424
S1.007	S29	240	Winter	30	+0%	10/15 Winter				23.438
S18.000	S30	360	Winter	30	+0%					24.000

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
S16.004	S25	-1.342	0.000	0.04		106.0	OK	
S17.000	S26	-0.262	0.000	0.37		67.7	OK	
S17.001	S27	-0.114	0.000	0.13		3.2	OK	
S1.006	S28	-1.027	0.000	0.02		62.0	OK	
S1.007	S29	0.188	0.000	0.50		28.8	SURCHARGED	
S18.000	S30	-0.150	0.000	0.00		0.0	OK	

©1982-2019 Innovyze

Pitman Associates Ltd	Page 26	
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	nian lade
XP Solutions	Network 2019.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Volumetric Runoff Coeff 0.750 Foul Sewage per hectare (1/s) 0.000
Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 12 Number of Online Controls 1 Number of Time/Area Diagrams 7 Number of Offline Controls 0 Number of Real Time Controls 0

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF
Analysis Timestep Fine Inertia Status OFF
DTS Status ON

Profile(s)
Duration(s) (mins)
15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years)
Climate Change (%)
Summer and Winter
15, 30, 60, 120, 180, 240, 360, 480, 600,
7200, 8640, 10080
10, 30, 100
0, 0, 40

PN	US/MH Name		torm		Climate Change		• •		First (Z) Overflow	Overflow Act.
S1.000	S1	15	Winter	100	+40%					
S1.001	S2	15	Winter	100	+40%					
S2.000	S2	30	Winter	100	+40%					
s3.000	S3	30	Winter	100	+40%					
S4.000	S4	15	Winter	100	+40%	30/15	Summer			
S1.002	S6	480	Winter	100	+40%					
S5.000	s7	30	Winter	100	+40%					
S6.000	S8	15	Winter	100	+40%	100/15	Summer			
S7.000	S9	15	Winter	100	+40%					
S1.003	S10	360	Winter	100	+40%					
S8.000	S11	360	Winter	100	+40%	100/360	Winter			
S9.000	S12	15	Winter	100	+40%	30/15	Summer			
S10.000	S13	15	Winter	100	+40%	30/15	Summer			
S1.004	S14	480	Winter	100	+40%					
S11.000	S15	960	Winter	100	+40%	100/120	Winter			
S12.000	S16	15	Winter	100	+40%	10/15	Summer			
S13.000	S17	960	Winter	100	+40%	100/15	Summer			
S1.005	S18	1440	Summer	100	+40%					
S14.000	S19	1440	Summer	100	+40%	100/120	Summer			
S15.000	S20	15	Winter	100	+40%	30/15	Summer			
S16.000	S21	15	Winter	100	+40%					
S16.001	S22	15	Winter	100	+40%					
S16.002	S23	15	Winter	100	+40%					
S16.003	S24	480	Winter	100	+40%					
				©1	1982-20	19 Inno	vyze			

Pitman Associates Ltd		Page 27
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	niamade
XP Solutions	Network 2019.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank $\underline{1}$) for Storm

PN	US/MH Name		Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S1	24.159	-0.141	0.000	0.55		37.9	OK	
S1.001	S2	23.709	-1.092	0.000	0.03		93.4	OK	
S2.000	S2	23.900	0.000	0.000	1.77		99.2	SURCHARGED*	
S3.000	s3	23.838	-0.162	0.000	0.44		31.1	OK	
S4.000	S4	24.570	0.570	0.000	2.16		153.8	SURCHARGED	
S1.002	S6	23.652	-1.149	0.000	0.03		86.7	OK	
S5.000	s7	23.829	-0.221	0.000	0.16		15.9	OK	
S6.000	S8	24.460	0.410	0.000	1.53		154.2	SURCHARGED	
S7.000	S9	23.887	-0.163	0.000	0.43		53.2	OK	
S1.003	S10	23.743	-0.958	0.000	0.05		111.3	OK	
S8.000	S11	23.768	0.018	0.000	0.11		6.6	SURCHARGED	
S9.000	S12	24.214	0.464	0.000	2.36		136.7	SURCHARGED	
S10.000	S13	24.591	0.741	0.000	2.15		120.2	SURCHARGED	
S1.004	S14	23.794	-0.807	0.000	0.07		154.7	OK	
S11.000	S15	23.795	0.145	0.000	0.13		7.4	SURCHARGED	
S12.000	S16	24.376	0.726	0.000	2.85		165.3	SURCHARGED	
S13.000	S17	23.793	0.093	0.000	0.07		4.0	SURCHARGED	
S1.005	S18	23.853	-0.648	0.000	0.02		58.0	OK	
S14.000	S19	23.836	0.236	0.000	0.06		3.7	SURCHARGED	
S15.000	S20	23.916	0.316	0.000	2.05		118.9	SURCHARGED	
S16.000	S21	24.002	-0.799	0.000	0.01		12.0	OK	
S16.001	S22	23.806	-0.995	0.000	0.01		36.0	OK	
S16.002	S23	23.725	-1.076	0.000	0.06		123.0	OK	
S16.003	S24	23.642	-1.159	0.000	0.01		42.7	OK	

©1982-2019 Innovyze

Pitman Associates Ltd		Page 28
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	pramaye
XP Solutions	Network 2019.1	

$\frac{100 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank}}{\underline{1) \text{ for Storm}}}$

										Water
	US/MH			Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	St	torm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
S16.004	S25	360	Winter	100	+40%					23.736
S17.000	S26	30	Winter	100	+40%					24.781
S17.001	S27	720	Winter	100	+40%					24.361
S1.006	S28	1440	Summer	100	+40%					23.885
S1.007	S29	240	Winter	100	+40%	10/15 Winter				23.941
S18.000	S30	360	Winter	100	+40%					24.000

		Surcharged	${\tt Flooded}$			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S16.004	S25	-1.065	0.000	0.10		277.2	OK	
S17.000	S26	-0.169	0.000	0.71		131.4	FLOOD RISK	
S17.001	S27	-0.089	0.000	0.35		8.6	OK	
S1.006	S28	-0.566	0.000	0.02		53.9	OK	
S1.007	S29	0.691	0.000	0.51		29.5	SURCHARGED	
S18.000	S30	-0.150	0.000	0.00		0.0	OK	

Pitman Associates Ltd		Page 29
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 30/09/2019 08:48	Designed by Karl	Designation
File FC Proposed SW - inc gr	Checked by	Dialilade
XP Solutions	Network 2019.1	

Discharge Wizard Results for Storm

Summary

Discharge Rates Check - Pass

Discharge Volumes Check - Fail

Minimal Discharge Check - Not Run

Discharge Rates Check

/Fail
Pass

Discharge Volumes Check

PN	Volume Calculation	Pre-development	Post-development	Pass/Fail
	Method	Volume (m³)	Volume (m³)	

1.007 Greenfield 138.816 1879.396 Fail

(Pre-development runoff volume (except those marked with '*') for the 100 year, 360 minutes, Winter storm)

(Post-development runoff volume for the 100 year, 360 minutes, Winter storm with 0% climate change)

Warning - The network was still discharging at the end of the discharge volume test and so it is unlikely the system has fully drained down. It is advisable you rerun the simulation using a longer analysis time to allow the system to fully drain down.

©1982-2019 Innovyze

3. MicroDrainage printout for existing drainage system - 100year +40% rainfall event

Pitman Associates Ltd		Page 1
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 01/09/2019 19:00	Designed by Karl	Designation
File FC Existing SW.MDX	Checked by	nian lade
XP Solutions	Network 2019.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Bas Flow (k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	20.000	0.200	100.0	0.027	4.00		0.0	0.600	0	150	Pipe/Conduit	0
s2.000	20.000	0.550	36.4	0.036	4.00		0.0	0.600	0	150	Pipe/Conduit	â
s3.000	20.000	0.550	36.4	0.075	4.00		0.0	0.600	0	150	Pipe/Conduit	6
S1.001	20.000	0.300	66.7	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	•

Network Results Table

PN	Rain (mm/hr)				Σ Base Flow (1/s)				Cap (1/s)		
S1.000	75.00	4.33	23.650	0.027	0.0	0.0	0.0	1.00	17.8	5.5	
S2.000	75.00	4.20	24.000	0.036	0.0	0.0	0.0	1.67	29.6	7.3	
s3.000	75.00	4.20	24.000	0.075	0.0	0.0	0.0	1.67	29.6	15.2	
S1.001	75.00	4.54	23.450	0.138	0.0	0.0	0.0	1.60	63.8	28.0	

©1982-2019 Innovyze

Pitman Associates Ltd		Page 2
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 01/09/2019 19:00	Designed by Karl	Designation
File FC Existing SW.MDX	Checked by	niamade
XP Solutions	Network 2019.1	

$\underline{\text{Manhole Schedules for Storm}}$

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	24.900	1.250	Open Manhole	1200	S1.000	23.650	150				
			Open Manhole		S2.000	24.000	150				
S3	25.000	1.000	Open Manhole	1200	s3.000	24.000	150				
S3	24.500	1.050	Open Manhole	1200	S1.001	23.450	225	S1.000	23.450	150	
								S2.000	23.450	150	
								s3.000	23.450	150	
S	24.400	1.250	Open Manhole	0		OUTFALL		S1.001	23.150	225	

No coordinates have been specified, layout information cannot be produced.

Pitman Associates Ltd		Page 3
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 01/09/2019 19:00	Designed by Karl	Designation
File FC Existing SW.MDX	Checked by	Dialitage
XP Solutions	Network 2019.1	1

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	0	150	S1	24.900	23.650	1.100	Open Manhole	1200
S2.000	0	150	S2	24.900	24.000	0.750	Open Manhole	1200
s3.000	0	150	s3	25.000	24.000	0.850	Open Manhole	1200
S1.001	0	225	s3	24.500	23.450	0.825	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	20.000	100.0	s3	24.500	23.450	0.900	Open Manhole	1200
S2.000	20.000	36.4	S3	24.500	23.450	0.900	Open Manhole	1200
S3.000	20.000	36.4	s3	24.500	23.450	0.900	Open Manhole	1200
S1.001	20.000	66.7	S	24.400	23.150	1.025	Open Manhole	0

Free Flowing Outfall Details for Storm

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level (m)	(mm)	(mm)
S1.001	S		24.400		23.150		0.000	0	0

©1982-2019 Innovyze

Pitman Associates Ltd		Page 4
South Lodge		
Exminster		The second second
Devon EX6 8AT		Micro
Date 01/09/2019 19:00	Designed by Karl	Designation
File FC Existing SW.MDX	Checked by	pramaye
XP Solutions	Network 2019.1	

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Volumetric Runoff Coeff 0.750 Foul Sewage per hectare (1/s) 0.000
Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF
Analysis Timestep Fine Inertia Status OFF
DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080

Return Period(s) (years) 1, 30, 100, 101
Climate Change (%) 0, 0, 0, 40

	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.

 \$1.000
 \$1
 15
 Summer
 1
 +0%
 100/15
 Summer

 \$2.000
 \$2
 15
 Summer
 1
 +0%
 101/15
 Summer

 \$3.000
 \$3
 15
 Summer
 1
 +0%
 30/15
 Summer
 101/15
 Summer

 \$1.001
 \$3
 15
 Summer
 1
 +0%
 100/15
 Summer

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)		Status	Level Exceeded	
S1.000	S1	23.705	-0.095	0.000	0.29		4.8	OK		
S2.000	S2	24.049	-0.101	0.000	0.23		6.4	OK		
S3.000	s3	24.073	-0.077	0.000	0.48		13.4	OK	3	
S1.001	s3	23.553	-0.122	0.000	0.43		24.7	OK		

Pitman Associates Ltd		Page 5
South Lodge		
Exminster		The second second
Devon EX6 8AT		Micro
Date 01/09/2019 19:00	Designed by Karl	Designation
File FC Existing SW.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Volumetric Runoff Coeff 0.750 Foul Sewage per hectare (1/s) 0.000
Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF
Analysis Timestep Fine Inertia Status OFF
DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 1, 30, 100, 101

0, 0, 0, 40

	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.
S1.000	S1	15 Summer	30	+0%	100/15 Summer			

\$2.000 \$2 15 Summer \$30 +0% 101/15 Summer \$3.000 \$3 15 Summer \$30 +0% 30/15 Summer 101/15 Summer \$1.001 \$3 15 Summer \$30 +0% 100/15 Summer

Climate Change (%)

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S1	23.744	-0.056	0.000	0.71		11.8	OK	
S2.000	S2	24.081	-0.069	0.000	0.57		15.8	OK	
s3.000	s3	24.294	0.144	0.000	1.08		30.2	SURCHARGED	3
S1.001	S3	23.630	-0.045	0.000	0.98		56.7	OK	

©1982-2019 Innovyze

Pitman Associates Ltd		Page 6
South Lodge		
Exminster		The second second
Devon EX6 8AT		Micro
Date 01/09/2019 19:00	Designed by Karl	Designation
File FC Existing SW.MDX	Checked by	pramaye
XP Solutions	Network 2019.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Volumetric Runoff Coeff 0.750 Foul Sewage per hectare (1/s) 0.000
Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF
Analysis Timestep Fine Inertia Status OFF
DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 1, 30, 100, 101
Climate Change (%) 0, 0, 0, 40

PN Name Storm Period Change Surcharge Flood Overflow Act. S1.000 S1 15 Summer 100 +0% 100/15 Summer S2.000 S2 15 Summer 100 +0% 101/15 Summer S3.000 S3 15 Summer 100 +0% 30/15 Summer 101/15 Summer

+0% 100/15 Summer

First (Y)

First (Z) Overflow

Return Climate First (X)

S1.001

S3 15 Summer

100

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S1	23.905	0.105	0.000	0.80		13.4	SURCHARGED	
S2.000	S2	24.096	-0.054	0.000	0.74		20.5	OK	
s3.000	s3	24.662	0.512	0.000	1.27		35.3	SURCHARGED	3
S1.001	s3	23.770	0.095	0.000	1.16		67.1	SURCHARGED	

Pitman Associates Ltd		Page 7
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 01/09/2019 19:00	Designed by Karl	Designation
File FC Existing SW.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

101 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

volumetric Runoff Coeff 0.750 Foul Sewage per hectare (1/s) 0.000
Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.000
Headloss Coeff (Global) 0.500 Volumetric Runoff Coeff 0.750 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

> Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls O Number of Time/Area Diagrams O Number of Offline Controls 0 Number of Real Time Controls 0

> Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100, 101 Climate Change (%) 0, 0, 0, 40

	US/MH		Return Climate	First (X)	First (Y)	First (Z)	Overflow
PN	Name	Storm	Period Change	Surcharge	Flood	Overflow	Act.

Pipe

S1.000	S1 15	Summer	101	+40%	100/15	Summer		
S2.000	S2 15	Summer	101	+40%	101/15	Summer		
s3.000	S3 15	Summer	101	+40%	30/15	Summer	101/15	Summer
S1.001	S3 15	Summer	101	+40%	100/15	Summer		

Water Surcharged Flooded

PN	US/MH Name	Level	Depth (m)	Volume (m³)	Flow / Cap.	Overflow (1/s)	Flow (1/s)	Status	Level Exceeded
S1.000	S1	24.203	0.403	0.000	1.10		18.4	SURCHARGED	
S2.000	S2	24.391	0.241	0.000	0.88		24.6	SURCHARGED	
s3.000	s3	25.002	0.852	1.932	1.44		40.0	FLOOD	3
S1.001	s3	23.956	0.281	0.000	1.40		80.7	SURCHARGED	

©1982-2019 Innovyze

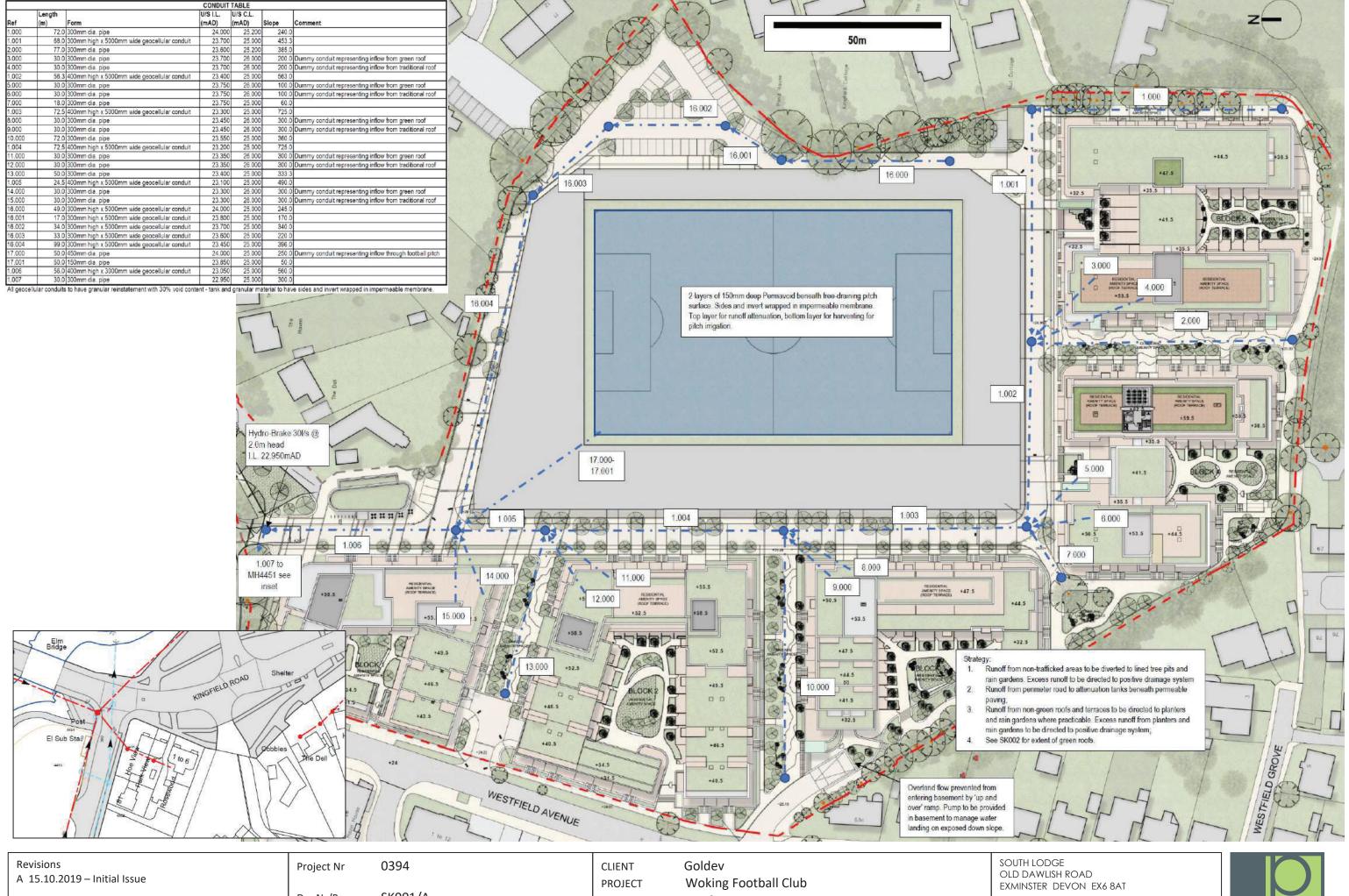
Pitman Associates Ltd		Page 8
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 01/09/2019 19:00	Designed by Karl	Designation
File FC Existing SW.MDX	Checked by	Diali laye
XP Solutions	Network 2019.1	<u>'</u>

Discharge Wizard Results for Storm

Summary

Discharge Rates Check - Fail

Discharge Volumes Check - Not Run


Minimal Discharge Check - Not Run

Discharge Rates Check

PN RP(yrs) / CC(%)		Pre-development	Post-development	Pass/Fail
		Discharge Rate (1/s)	Discharge Rate (1/s)	
1.001	1yr +0%	1.0	24.7	Fail
1.001	30yr +0%	1.0	56.7	Fail
1.001	100yr +0%	1.0	67.1	Fail
1.001	101yr +40%	1.0	80.7	Fail

APPENDIX B DRAWINGS

SK001 Surface Water Layout
SK002 Surface Water – Area Take-Off
SK003 Existing Site Drainage

Project Nr 0394

Ons 10.2019 – Initial Issue

Project Nr 0394

Org Nr/Rev SK001/A

Status Planning Issue

CLIENT Goldev Woking Football Club

PROJECT Woking Football Club

Surface Water Drainage Layout
SCALE As shown

South LODGE OLD DAWLISH ROAD EXMINSTER DEVON EX6 8AT

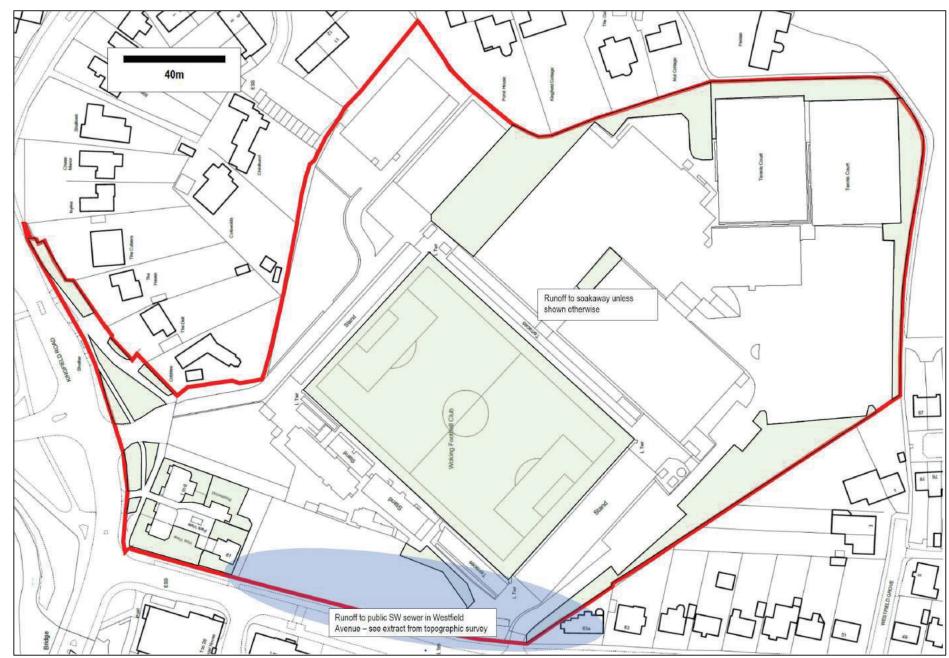
Telephone: +44(0)1392 824616
Email: admin@pitmanassociates.com pitmanassociates.com pitmanassociates.com

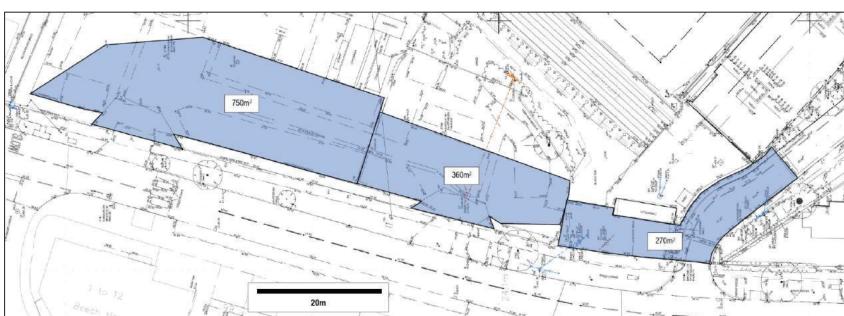
Revisions
A 15.10.2019 – Initial Issue

Drg Nr/Rev SK002/A

Status Planning Issue

CLIENT Goldev


PROJECT Woking Football Club


DRG TITLE SCALE Surface Water Drainage – Area Take-off
As shown

SOUTH LODGE OLD DAWLISH ROAD EXMINSTER DEVON EX6 8AT

Telephone: +44(0)1392 824616 Email: <u>admin@pitmanassociates.com</u> pitmanassociates.com

SOUTH LODGE OLD DAWLISH ROAD EXMINSTER DEVON EX6 8AT Revisions 0394 CLIENT Goldev Project Nr A 30.08.2019 – Planning Issue Woking Football Club PROJECT SK003/A Drg Nr/Rev **Existing Surface Water Drainage Arrangements** DRG TITLE Telephone: +44(0)1392 824616 Email: admin@pitmanassociates.com Planning Issue Status pitmanassociates.com SCALE As shown

WE LISTEN, WE PLAN, WE DELIVER

Seatechnical Engineering and Environmental Services across the UK

Wayne Gold Goldev Woking Ltd

JOMAS ASSOCIATES LTD 6-9 The Square Stockley Park Uxbridge UB11 1FW

> Tel: 0843-289-2187 Fax: 0872-115-4505

www.jomasassociates.com info@jomasassociates.com

P1381J1460/PSw

02/07/2019

Dear Wayne,

WOKING FOOTBALL CLUB, KINGFIELD ROAD, WOKING, SURREY, GU22 9AA: SOIL INFILTRATION TESTING

Jomas attended the above-mentioned site under instruction by Goldev Woking Ltd on 21st June 2019 to carry out falling head permeability tests within the boreholes previously installed on the site.

A full list of previous reports undertaken for the site by Jomas are detailed in Table 1 below:

Table 1: Previous Reports - Jomas

Title	Author	Reference	Date
Desk Study / Preliminary Risk Assessment Report For Woking Football Club, Laithwaite Community Stadium, Kingfield Road, Kingfield, Woking, GU22 9AA	Jomas Associates Ltd	P1381J1460/AM Final V1.0	17 August 2018
Woking Football Club, Laithwaite Community Stadium, Kingfield Road, Woking, GU22 9AA Geo-Environmental Scoping Letter	Jomas Associates Ltd	P1381j1460/Amm	18 April 2019
Geo-Environmental & Geotechnical Assessment (Ground Investigation) Report, Woking Football Club, Laithwaite Community Stadium, Kingfield Road, Woking, GU22 9AA	Jomas Associates Ltd	P1381J1460/AMM Final V1.0	30 April 2019

This phase of work did not involve any further intrusive investigation works.

Ground Conditions

Full logs of the ground conditions observed on site are included in Appendix 2 of the ground investigation report, however, a summary of the ground conditions is provided below:

Page 1 of 3

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

Table 2: Ground Conditions Previously Encountered

Stratum and Description	Encountered from (m bgl)	Base of strata (m bgl)	Thickness range (m)
Asphalt. (MADE GROUND)	0.0	0.05 – 0.20	0.05 – 0.20
Brown sandy gravelly clay with rootlets. Sand is fine. Gravel consists of flint, concrete, brick and asphalt fragments. (MADE GROUND – Topsoil) Encountered in WS4 and WS5 only	0.0	0.30 – 0.50	0.30 - 0.50
Black to brown slightly clayey sandy gravel. Sand is fine to medium. Gravel consists of flint, brick, concrete, asphalt, glass and ceramic fragments. (MADE GROUND)	0.05 – 0.30	0.30 – 1.10	0.18 – 1.15
Black to brown clayey gravelly sand. Sand is medium. Gravel consists of fine to coarse flint and asphalt fragments. (MADE GROUND)	0.30 – 1.10	0.70 – 1.40	0.25 – 0.90
Loose to very dense orange to grey silty clayey very gravelly SAND. Sand is fine. Gravel consists of flint. (KEMPTON PARK GRAVEL)	0.30 – 1.40	2.00 – 4.15	0.70 – 3.20
Medium to very dense grey silty SAND. Sand is medium to coarse. (BAGSHOT FORMATION)	2.00 – 3.60	3.75 – 25.00	0.85 – 22.30

Falling Head Permeability Tests

The determination of permeability of the underlying ground was undertaken by carrying out insitu falling head tests. These were carried out to conform with the methodology for falling head permeability test formerly outlined in BS: 5930 (1999) and recently in BS EN ISO 22282-2.

Copies of the results and calculations are appended to this letter.

Falling head permeability tests were carried out in 2no. historically installed boreholes. Jomas has not been provided with details of these installs. It is assumed that the hole had been drilled with 150mm casing. Similarly, the installation is assumed to be 1m of plain pipe with slotted to the base of the well at 4.3m (HBH2) and 5.9m (HBH4)

1No test lasting for approximately 1hour was undertaken in each location, the results of these tests are summarised below with the full calculation and result sheets appended to this letter.

Page **2** of **3**

WE LISTEN, WE PLAN, WE DELIVER

Seatechnical Engineering and Environmental Services across the UK.

Hole ID	Calculated Permeability (m/s)	Indicative Permeability*	Indicative Drainage Conditions*
HBH2	4.05 x 10 ⁻⁵	Low	Good
HBH4	2.15 x 10 ⁻⁴	Medium	Good
WS2	2.66 x 10 ⁻⁶	Low	Poor
WS7	6.11 x 10 ⁻⁷	Very Low	Poor
WS10	9.84 x 10 ⁻⁷	Very Low	Poor
BH2	9.31 x 10 ⁻⁷	Very Low	Poor
ВН3	1.32 x 10 ⁻⁵	Low	Good

^{*}After Casagrande and Fadum (1940)

We trust that this is satisfactory for your current needs, however please do not hesitate to contact the udnersigned if we can be of further assistance on either this or any other project.

Yours sincerely,

Peter Swettenham BSc (Hons) MSc PgCert CEnv MIEnvSc

Principal Geotechnical Engineer

Enc.

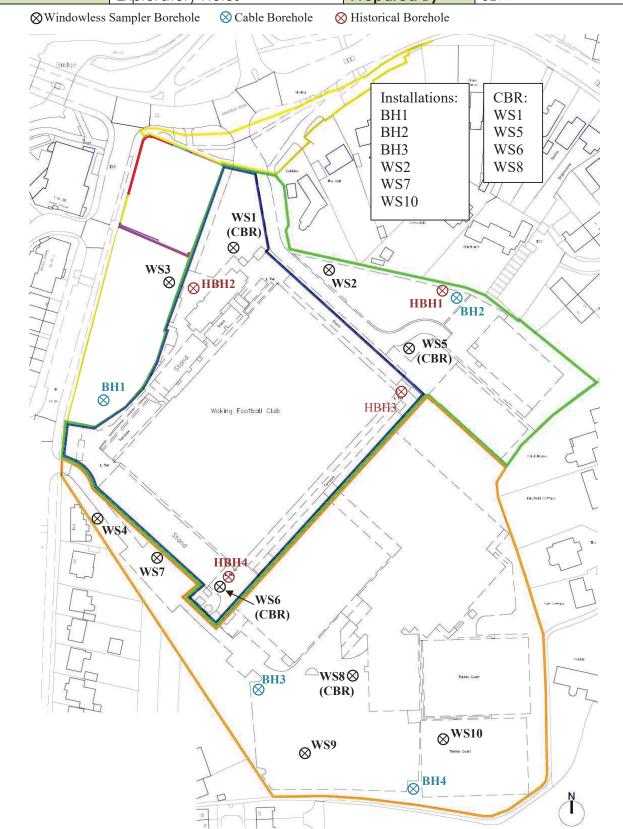
Appendix 1 – Figures

Appendix 2 – Infiltration Rates – Results and Calculations

Page 3 of 3

CJOMAS _

WE LISTEN, WE PLAN, WE DELIVER

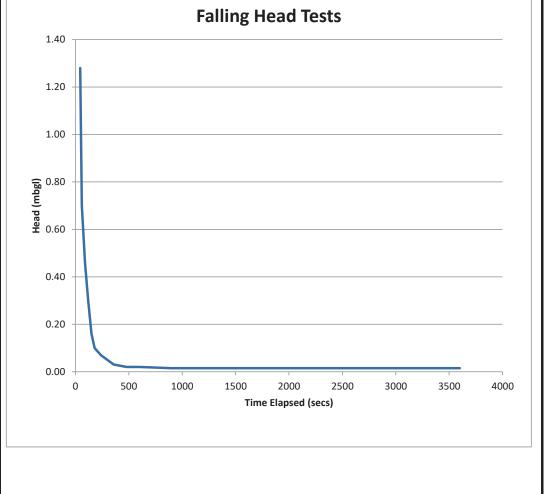

Septechnical Engineering and Environmental Services across the UI

APPENDIX 1 – FIGURES

JOMAS ASSOCIATES LTD T: 0843 289 2187

Project Name	Kingfield Road, Woking	Client	Goldev Woking Ltd
Project No.	P1381J1460	Date	March 2019
Title	Exploratory Holes	Prepared By	JLW

WE LISTEN, WE PLAN, WE DELIVER


Septechnical Engineering and Environmental Services across the U

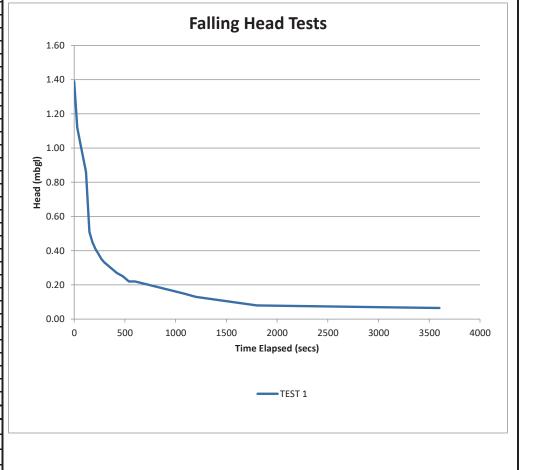
APPENDIX 2 – INFILTRATION RATES – RESULTS AND CALCULATIONS

IOMAS ASSOCIATES LTD 6-9 The Square, Stockley Park, Uxbridge, UB11 1FW www.jomasassociates.com 0843-289-2187 info@jomasassociates.com Jomas Associates Ltd Registered in England and Wales No. 7095350.

		FALLING H	IEAD TEST RECO	RD			
Client	Wayne Gold G		Ground Level		Hole Nr	HBH2	
Site	Kingsfield Road, Woking		Nat Grid Co-ordinates		Project Nr	P1381J1460	
Date	21/06/2019		Engineer	JPB			
Borehole Dimensions Borehole Diameter (m) Standpipe Diameter (m) Length of Slotted Pipe (m) F (Intake Factor) A (Cross-sectional Area)	0.150 3.30 Type D 6.55E+00 0.0177		ve been drilled with 150mm	casing slotted to the base of the well at 4.3m	Ground Cond	ditions	
					Standing Water	er Level (mbgl):	2.28

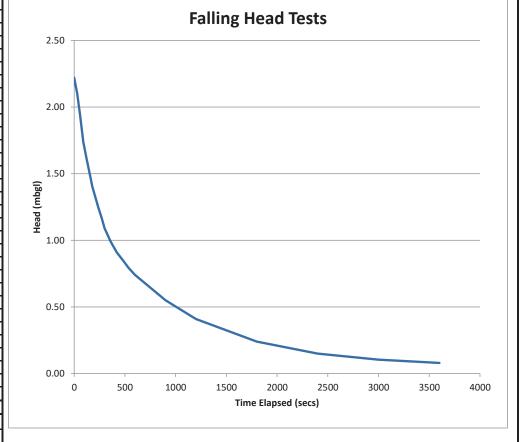
	TES	TEST 1		TEST 2		TEST 3	
Elapsed time	Depth to Water	Head	Depth to Water	Head	Depth to Water	Head	
secs	mbgl	m	mbgl	m	(Dw) mbgl	(Dg) m	
0	1.00	1.28					
30	1.58	0.70					
45	1.82	0.46					
60	1.98	0.30					
90	2.12	0.16					
120	2.18	0.10					
150	2.21	0.07					
180	2.23	0.05					
240	2.25	0.03					
300	2.26	0.02					
360	2.26	0.02					
420	2.26	0.02					
480	2.26	0.02					
540	2.27	0.01					
600	2.27	0.01					
900	2.27	0.01					
1200	2.27	0.01					
1800	2.27	0.01					
2400	2.27	0.01					
3000	2.27	0.01					
3600	2.27	0.01					
	TES	TEST 1		TEST 2		TEST 3	
t1 (sec)	30	30					
t2 (sec)		240					
t2-t1 (sec)		210					
h1 (m)		0.7					
h2 (m)	0.0	13					
Permeability -k - (m/sec)	4.05	E-05					
Permeability -k - (m/sec)							

Remarks:

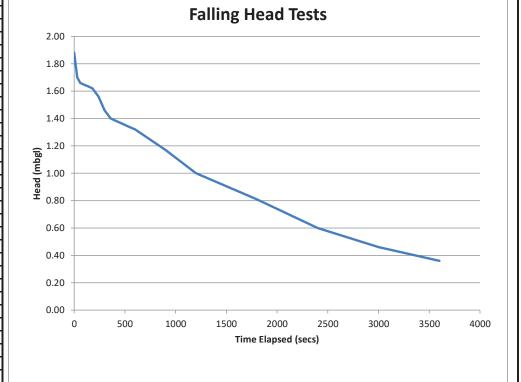

Approved By: F

FALLING HEAD TEST RECORD									
Client	Wayne Gold		Ground Level		Hole Nr	НВН4			
Site	Kingsfield Road, Woking		Nat Grid Co-ordinates		Project Nr	P1381J1460			
Date	02/11/2015		Engineer	JPB					
Borehole Dimensions		Well Installation	Details (mbgl)		Ground Cond	itions			
Borehole Diameter (m)									
Standpipe Diameter (m)	0.150	Hole assumed to h	ave been drilled with 150mm	casing					
Length of Slotted Pipe (m)	6.00	Installation assume	ed to be 1m of plain pipe with	slotted to the base of the well at 4.3m					
F (Intake Factor)	Type A 3.00E-01								
A (Cross-sectional Area)	0.0177								
					Standing Wate	er Level (mbgl):	2.02		

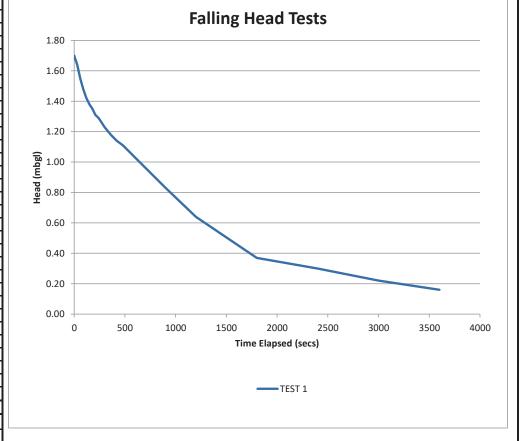
Remarks:


Approved By:

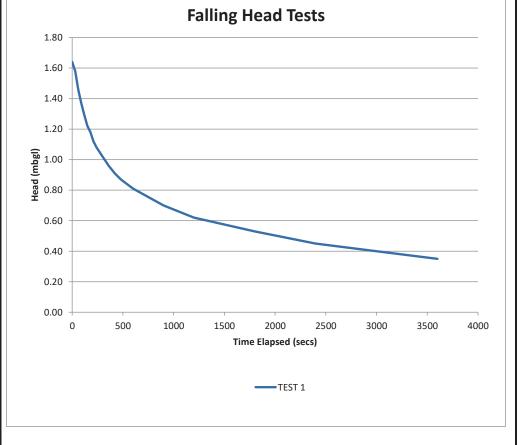
	TEST	1	TES	ST 2	TEST 3		
Elapsed time	Depth to Water	Head	Depth to Water	Head	Depth to Water	Head	
secs	mbgl	m	mbgl	m	(Dw) mbgl	(Dg) r	
0	0.63	1.39					
30	0.90	1.12					
60	0.99	1.03					
117	1.16	0.86					
150	1.51	0.51					
180	1.57	0.45					
210	1.61	0.41					
240	1.64	0.38					
270	1.67	0.35					
300	1.69	0.33					
360	1.72	0.30					
420	1.75	0.27					
480	1.77	0.25					
540	1.80	0.22					
600	1.80	0.22					
1080	1.87	0.15					
1200	1.89	0.13					
1800	1.94	0.08					
2400	1.95	0.08					
3000	1.95	0.07					
3600	1.96	0.06					
	TEST	TEST 1		TEST 2		TEST 3	
t1 (sec)	30	30					
t2 (sec)	i i	420					
t2-t1 (sec)		390					
					+		
h1 (m)		1.1					
h2 (m)	0.2	0.27					
Permeability -k - (m/sec)	2.15	-04					


		FALLING H	IEAD TEST RECOR	RD			
Client	Wayne Gold		Ground Level		Hole Nr	WS2	
Site	Kingsfield Road, Woking		Nat Grid Co-ordinates		Project Nr	P1381J1460	
Date	21/06/2019		Engineer	JPB			
Borehole Dimensions Borehole Diameter (m) Standpipe Diameter (m) Length of Slotted Pipe (m) F (Intake Factor) A (Cross-sectional Area)	0.100 2.00 Type D 4.13E+00 0.0079	Well Installation 0 - 1m Plain pipe w 1m - 3m slotted wit 3.0m - 4.45m backf	ith bentonite surround th gravel surround		Ground Condi	tions	
					Standing Water	r Level (mbgl):	2.87

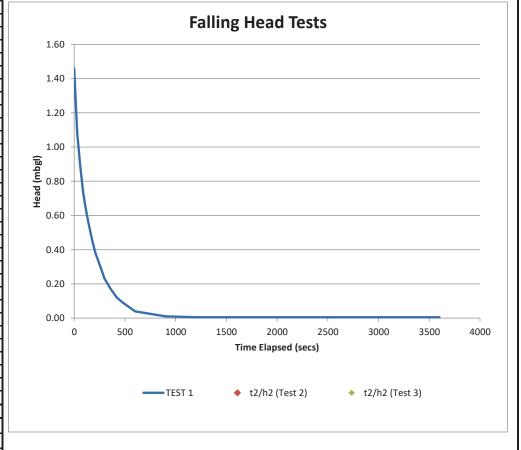
	TEST	1		TEST 2		TEST 3	
Elapsed time	Depth to Water	Head	Depth to Water	Head	Depth to Water	Head	
secs	mbgl	m	mbgl	m	(Dw) mbgl	(Dg) r	
0	0.65	2.22					
30	0.77	2.10					
60	0.94	1.93					
90	1.13	1.74					
120	1.25	1.62					
150	1.36	1.51					
180	1.47	1.40					
240	1.63	1.24					
270	1.70	1.17					
300	1.78	1.09					
360	1.88	0.99					
420	1.96	0.91					
480	2.02	0.85					
540	2.08	0.79					
600	2.13	0.74					
900	2.32	0.55					
1200	2.46	0.41					
1800	2.63	0.24					
2400	2.72	0.15					
3000	2.77	0.11					
3600	2.79	0.08					
	TEST		TES	T 2	TES		
t1 (sec)	30)			12	20	
t2 (sec)	120	0					
t2-t1 (sec)	117						
h1 (m)	2.1						
h2 (m)	0.4						
112 (111)							
Permeability -k - (m/sec)	2.66E	-06					


		FALLING H	IEAD TEST RECOR	RD			
Client	Wayne Gold		Ground Level		Hole Nr	WS7	
Site	Kingsfield Road, Woking		Nat Grid Co-ordinates		Project Nr	P1381J1460	
Date	21/06/2019		Engineer	JPB			
Borehole Dimensions		Well Installation	Details (mbgl)		Ground Condi	tions	
Borehole Diameter (m)							
Standpipe Diameter (m)	0.100	0 - 1m Plain pipe wi	ith bentonite surround				
Length of Slotted Pipe (m)	3.15	1m - 4.15m slotted	with gravel surround				
F (Intake Factor)	Type D 5.66E+00						
A (Cross-sectional Area)	0.0079						
					Standing Wate	r Level (mbgl):	2.12

	TEST	TEST 1		TEST 2		TEST 3	
Elapsed time	Depth to Water	Head	Depth to Water	Head	Depth to Water	Head	
secs	mbgl	m	mbgl	m	(Dw) mbgl	(Dg) r	
0	0.24	1.88					
30	0.42	1.70					
60	0.44	1.68					
90	0.46	1.66					
120	0.47	1.65					
150	0.48	1.64					
180	0.49	1.63					
210	0.50	1.62					
240	0.56	1.56					
270	0.66	1.46					
300	0.72	1.40					
360	0.74	1.38					
420	0.76	1.36					
480	0.78	1.34					
600	0.80	1.32					
900	0.95	1.17					
1200	1.12	1.00					
1800	1.31	0.81					
2400	1.52	0.60					
3000	1.66	0.46					
3600	1.76	0.36					
	TEST		TES	T 2	TES	T 3	
t1 (sec)	30)					
t2 (sec)	300	0					
t2-t1 (sec)	297						
h1 (m)	1.7						
h2 (m)	0.4						
112 (111)							
Permeability -k - (m/sec)	6.11E	-07					


		FALLING H	IEAD TEST RECOR	D			
Client	Wayne Gold		Ground Level		Hole Nr	WS10	
Site	Kingsfield Road, Woking		Nat Grid Co-ordinates		Project Nr	P1381J1460	
Date	21/06/2019		Engineer	JPB			
Borehole Dimensions		Well Installation	Details (mbgl)		Ground Cond	itions	
Borehole Diameter (m)							
Standpipe Diameter (m)	0.100	0 - 1m Plain pipe w	ith bentonite surround				
Length of Slotted Pipe (m)	2.95	1m - 3.95m slotted	with gravel surround				
F (Intake Factor)	Type D 5.40E+00						
A (Cross-sectional Area)	0.0079						
					Standing Wate	r Level (mbgl):	1.98

	TEST 1			TEST 2		TEST 3	
Elapsed time	Depth to Water	Head	Depth to Water	Head	Depth to Water	Head	
secs	mbgl	m	mbgl	m	(Dw) mbgl	(Dg) m	
0	0.28	1.70					
30	0.34	1.64					
60	0.43	1.55					
90	0.50	1.48					
120	0.56	1.42					
150	0.60	1.38					
180	0.63	1.35					
210	0.67	1.31					
240	0.69	1.29					
270	0.72	1.26					
300	0.75	1.23					
360	0.80	1.18					
420	0.84	1.14					
480	0.87	1.11					
600	0.95	1.03					
900	1.15	0.83					
1200	1.34	0.64					
1800	1.61	0.37					
2400	1.68	0.30					
3000	1.76	0.22					
3600	1.82	0.16					
	TEST	1	TE	ST 2	TES	T 3	
t1 (sec)	30						
t2 (sec)	300						
t2-t1 (sec)	297						
	i i				+		
h1 (m)	1.6		_		+		
h2 (m)	0.22	2					
Permeability -k - (m/sec)	9.84E	-07					


		FALLING H	IEAD TEST RECOF	RD			
Client	Wayne Gold		Ground Level		Hole Nr	BH2	
Site	Kingsfield Road, Woking		Nat Grid Co-ordinates		Project Nr	P1381J1460	
Date	21/06/2019		Engineer	JPB			
Borehole Dimensions		Well Installation	Details (mbgl)		Ground Condi	tions	
Borehole Diameter (m)							
Standpipe Diameter (m)	0.150	0 - 1m Plain pipe w	ith bentonite surround				
Length of Slotted Pipe (m)	5.00	1m - 6m slotted wit	th gravel surround				
F (Intake Factor)	Type D 8.78E+00	6.0m - 25m backfill	ed with arisisngs				
A (Cross-sectional Area)	0.0177						
					Standing Wate	r Level (mbgl):	2.29

	TEST	1	TES	TEST 2		TEST 3	
Elapsed time	Depth to Water	Head	Depth to Water			Head	
secs	mbgl	m	mbgl	m	(Dw) mbgl	(Dg) m	
0	0.65	1.64					
30	0.71	1.58					
60	0.83	1.46					
90	0.92	1.37					
120	1.00	1.29					
150	1.07	1.22					
180	1.11	1.18					
210	1.17	1.12					
240	1.21	1.08					
270	1.24	1.05					
300	1.27	1.02					
360	1.33	0.96					
420	1.38	0.91					
480	1.42	0.87					
600	1.48	0.81					
900	1.59	0.70					
1200	1.67	0.62					
1800	1.76	0.53					
2400	1.84	0.45					
3000	1.89	0.40					
3600	1.94	0.35					
			+				
					+		
	TECT		TEC	T 3	TEC	T 2	
	TEST		TES	1 4	TES	13	
t1 (sec)	30						
t2 (sec)	300	0					
t2-t1 (sec)	297	0					
h1 (m)	1.5	8					
h2 (m)	0.4						
()							
Permeability -k - (m/sec)	9.31E	-07					

		FALLING H	IEAD TEST RECOR	RD				
Client	Wayne Gold		Ground Level		Hole Nr	ВН3		
Site	Kingsfield Road, Woking		Nat Grid Co-ordinates		Project Nr	P1381J1460		
Date	21/06/2019		Engineer	JPB				
Borehole Dimensions		Well Installation	Details (mbgl)		Ground Condi	tions		
Borehole Diameter (m)								
Standpipe Diameter (m)	0.150	0 - 1m Plain pipe wi	th bentonite surround					
Length of Slotted Pipe (m)	4.00	1m - 5m slotted wit	h gravel surround					
F (Intake Factor)	Type D 7.49E+00	5.0m - 25m backfill	ed with arisisngs					
A (Cross-sectional Area)	0.0177							
					Standing Wate	r Level (mbgl)·	1 7	

	TEST	1		TEST 2		TEST 3 Depth to Water Head	
Elapsed time	Depth to Water	Head	Depth to Water	Head	Depth to Water		
secs	mbgl	m	mbgl	m	(Dw) mbgl	(Dg)	
0	0.24	1.46					
30	0.62	1.08					
60	0.81	0.89					
90	0.97	0.73					
120	1.08	0.62					
150	1.17	0.53					
180	1.25	0.45					
210	1.32	0.38					
240	1.37	0.33					
270	1.42	0.28					
300	1.47	0.23					
360	1.53	0.17					
420	1.58	0.12					
480	1.61	0.09					
600	1.66	0.04					
900	1.69	0.01					
1200	1.70	0.00					
1800	1.70	0.00					
2400	1.70	0.00					
3000	1.70	0.00					
3600	1.70	0.00					
	+						
	TEST	1	TES	Т 2	TES	т э	
			IES	1 4	IES	13	
t1 (sec)	30						
t2 (sec)	360)					
t2-t1 (sec)	330)		·			
h1 (m)	1.08						
h2 (m)	0.1						
Permeability -k - (m/sec)	1.32E	-05					

Remarks:

Approved By: PSv

Woking Football Club Woking FC FRA

Appendix E: Thames Water Sewer Records

 Issue 5
 21
 RMA Environmental

 November 2019
 RMA-C1947

Melissa Seymour RMA Environmental Ltd Suite 4 Swallow Court Devonshire Gate Tiverton Devon EX16 7EJ

Ref DS6062108

31 May 2019

Pre-planning enquiry: Capacity concerns

Dear Melissa

Thank you for providing information on your development at Woking Football Club comprising up to 1200 residential units with 25,000 sq ft of retail.

We have completed an initial assessment of the foul water flows based on the information submitted in your application and have concluded that our sewerage network will not have enough capacity to meet the needs of your development at this time.

To ensure we make the appropriate upgrades or 'off-site reinforcement' to serve your development, we'll need to carry out modelling work, design a solution and build the necessary improvements. This work would be at our cost.

Once we've begun modelling, we may need to contact you to discuss the point of connection to the sewer. Please note that we'll pay the cost of covering any extra distance if the connection needs to be made at a point further away than the nearest practicable point of at least the same diameter.

How long could modelling and reinforcement take?

Typical timescales for a development of your size are:

Modelling: 8 months
Design: 6 months
Construction: 10 months
Total: 24 months

If the time you're likely to take from planning and construction through to first occupancy is longer than this, we'll be able to carry out the necessary upgrades in time for your development. If it's shorter, please contact me on the number below to discuss the timing of our activities.

Thames Water Utilities Limited - Registered Office: Clearwater Court, Vastern Road, Reading RG1 8DB

What do you need to tell us before we start modelling?

We're responsible for funding any modelling and reinforcement work.

We need, though, to spend our customers' money wisely, so we'll only carry out modelling once we're confident that your development will proceed.

To have this confidence, we'll need to know that you **own the land and have either outline or full planning permission**. Please email this information to us as soon as you have it.

If you'd like us to start modelling work ahead of this assurance, we can do this if you agree to underwrite the cost of modelling and design. That means we'll fund the work, but you agree to pay the cost if you don't achieve first occupancy within five years.

I've attached an example of our underwriting agreement. Please call me on the number below if you'd like to discuss this or want to request a copy of the agreement to complete.

If the modelling shows we need to carry out reinforcement work, then before we start construction we'll need you to supply us with notification that you've confirmed your F10 – Notification of construction project - submission to the Health and Safety Executive.

Surface Water

Please note that discharging surface water to the public sewer network should only be considered after all other methods of disposal have been investigated and proven to not be viable. In accordance with the Building Act 2000 Clause H3.3, positive connection to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. The disposal hierarchy being: 1st Soakaways; 2nd Watercourses; 3rd Sewers.

Only when it can be proven that soakage into the ground or a connection into an adjacent watercourse is not possible would we consider a restricted discharge into the public surface water/combined sewer network.

In considering your surface water needs, we support the use of sustainable drainage on development sites. You'll need to show the local authority and/or lead local flood authority how you've considered the surface water hierarchy that we've included.

If we haven't heard from you by the end of July, we'll contact you, so you can confirm whether you can provide the confidence we need. If so, we'll be able to start modelling if you still need it but we won't do so until you've confirmed that you need it. If you've any further questions, please contact me on 02035779224.

Yours sincerely

Lance Cooper

Thames Water Developer Services

Asset location search

Groundwise Searches Ltd Suite 8 Chichester House 45Chichester Road SOUTHEND ON SEA SS1 2JU

Search address supplied Woking Football Club

Woking GU22 9PF

Your reference 23397DM

Our reference ALS/ALS Standard/2019 3949961

Search date 8 February 2019

Keeping you up-to-date

Notification of Price Changes

From 1 September 2018 Thames Water Property Searches will be increasing the price of its Asset Location Search in line with RPI at 3.23%.

For further details on the price increase please visit our website: www.thameswater-propertysearches.co.uk Please note that any orders received with a higher payment prior to the 1 September 2018 will be non-refundable.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0845 070 9148

Asset location search

Search address supplied: Woking Football Club, Woking, GU22 9PF

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: searches@thameswater.co.uk

Web: www.thameswater-propertysearches.co.uk

<u>Thames Water Utilities Ltd.</u> Property Searches, PO Box 3189, Slough SL1 4WW, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Page 2 of 11

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

With regard to the fresh water supply, this site falls within the boundary of another water company. For more information, please redirect your enquiry to the following address:

Affinity Water Ltd Tamblin Way Hatfield AL10 9EZ

Tel: 0845 7823333

Asset location search

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Asset location search

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

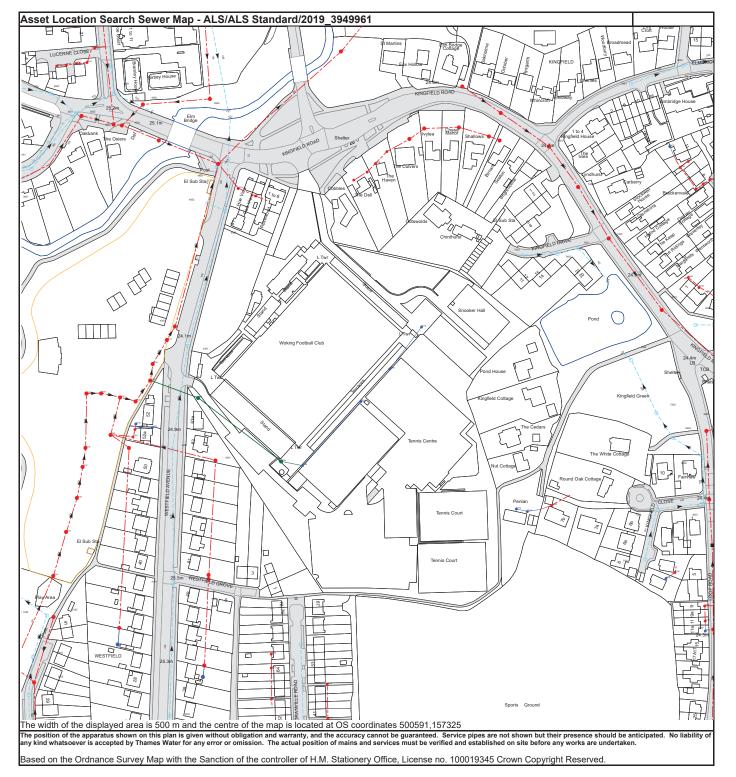
Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:


Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk

<u>Thames Water Utilities Ltd.</u> Property Searches, PO Box 3189, Slough SL1 4WW, DX 151280 Slough 13 **T** 0845 070 9148 **E** <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

Page 5 of 11

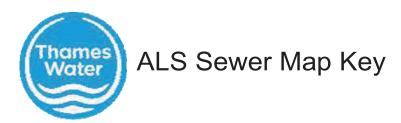
Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13

Page 6 of 11

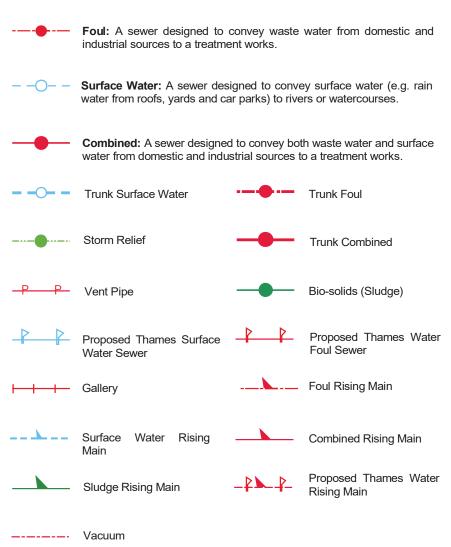
NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
621A 7453	n/a	n/a
7453 721A	25.11 n/a	24.33 n/a
721B	n/a	n/a
7452	24.98	24.22
7451 7402	24.85 24.82	24.15 23.15
7401	24.66	23.04
7352	24	23.54
7252 7251	24.11 24.61	23.55 24.14
8301	24.49	n/a
8253	24.32	23.6
831E 8352	n/a 24.24	n/a 23.27
841E	n/a	n/a
831D	n/a	n/a
8252 8251	24.57 24.49	23.71 23.81
8202	24.49	n/a
8203	24.43	n/a
831C	n/a	n/a
841F 841G	n/a n/a	n/a n/a
841D	n/a	n/a
8411	n/a	n/a
841C	n/a	n/a
7403 6405	24.83 n/a	23.26 n/a
6404	n/a	n/a
6502	n/a	n/a
651A 6501	n/a 24.57	n/a 23.99
7551	n/a	n/a
8553	24.14	22.79
431E	25.526	21.147
421C 431B	n/a 24.798	n/a 21.127
441B	n/a	n/a
431A	24.52	21.12
4301 4351	24.37 24.31	21.17 23.14
431F	n/a	n/a
4453	24.31	22.84
4504 4454	n/a n/a	n/a n/a
4401	24.87	21.345
4452	24.29	22.87
4451 441A	24.58 n/a	22.72 n/a
541A	n/a	n/a
5501	24.4	20.81
5401	n/a	n/a
531A 5402	n/a n/a	n/a n/a
541B	n/a	n/a
6401	n/a	n/a
631B 6402	n/a n/a	n/a n/a
631A	n/a	n/a
6403	n/a	n/a
321B 4202	25.567 25.73	21.377 21.15
4202 421E	25.73 n/a	n/a
421D	n/a	n/a
421B	n/a	n/a
431D 431C	25.347 25.554	21.175 21.205
331A	25.963	21.268
331B	25.824	21.247
3451 4501	26.55 25.27	24.36 21.96
4501 4502	25.27 25.44	21.96
3502	25.45	22.3
3551 4503	25.46	22.96
4503 3552	25.35 26.05	22.68 n/a
4552	25.45	22.42
351A	n/a	n/a
4553 351B	26.1 n/a	23.13 n/a
351C	n/a	n/a
351D	n/a	n/a
351E	n/a	n/a
3051 3151	21.79 n/a	20.74 n/a
3102	24.76	23.29
3152	22.86	21.6
311A 3103	25.774 24.62	21.473 23.88

Thames Water Utilities Ltd. Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk, I www.thameswater.propertysearches.co.uk


Page 7 of 11

Manhole Reference	Manhole Cover Level	Manhole Invert Level
811C	n/a	n/a
8102	24.37	23.13
811D	n/a	n/a
811E	n/a	n/a
811A	44.85	44.115
811B	n/a	n/a
7151	24.89	24.41
501A	n/a	n/a
4051	25.53	24.23
511A	n/a	n/a
41ZS	n/a	n/a
511B	n/a	n/a
41ZR	n/a	n/a
511C	n/a	n/a
5151	25.77	24.83
41ZW	n/a	n/a
41ZV	n/a	n/a
4151	25.43	n/a
4101	25.33	23.81
41ZT	n/a	n/a
321A	25.914	21.421
321C	25.643	21.341
521A	n/a	n/a
521B	n/a	n/a
4201	n/a	n/a
4251	24.98	23.4
321D	25.738	21.32
42ZY	n/a	n/a
421A	n/a	n/a


The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

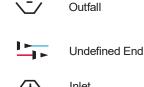
Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13

T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater.propertysearches.co.uk

Public Sewer Types (Operated & Maintained by Thames Water)

Sewer Fittings

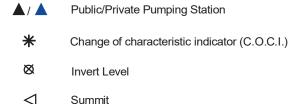
A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.


Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

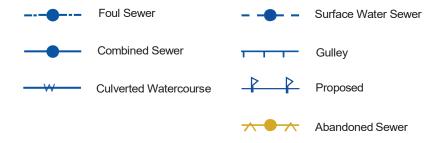

Notes:

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Other Symbols

Symbols used on maps which do not fall under other general categories



Areas

Lines denoting areas of underground surveys, etc.

Other Sewer Types (Not Operated or Maintained by Thames Water)

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4A.I.

Ways to pay your bill

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to 'Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Page 10 of 11

Terms and Conditions

Search Code

IMPORTANT CONSUMER PROTECTION INFORMATION

This search has been produced by Thames Water Property Searches, Clearwater Court, Vastern Road, Reading RG1 8DB, which is registered with the Property Codes Compliance Board (PCCB) as a subscriber to the Search Code. The PCCB independently monitors how registered search firms maintain compliance with the Code.

The Search Code:

- provides protection for homebuyers, sellers, estate agents, conveyancers and mortgage lenders who
 rely on the information included in property search reports undertaken by subscribers on residential
 and commercial property within the United Kingdom
- sets out minimum standards which firms compiling and selling search reports have to meet
- promotes the best practise and quality standards within the industry for the benefit of consumers and property professionals
- enables consumers and property professionals to have confidence in firms which subscribe to the code, their products and services.

By giving you this information, the search firm is confirming that they keep to the principles of the Code. This provides important protection for you.

The Code's core principles

Firms which subscribe to the Search Code will:

- display the Search Code logo prominently on their search reports
- act with integrity and carry out work with due skill, care and diligence
- at all times maintain adequate and appropriate insurance to protect consumers
- conduct business in an honest, fair and professional manner
- handle complaints speedily and fairly
- ensure that products and services comply with industry registration rules and standards and relevant laws
- monitor their compliance with the Code

Complaints

If you have a query or complaint about your search, you should raise it directly with the search firm, and if appropriate ask for any complaint to be considered under their formal internal complaints procedure. If you remain dissatisfied with the firm's final response, after your complaint has been formally considered, or if the firm has exceeded the response timescales, you may refer your complaint for consideration under The Property Ombudsman scheme (TPOs). The Ombudsman can award compensation of up to £5,000 to you if the Ombudsman finds that you have suffered actual loss and/or aggravation, distress or inconvenience as a result of your search provider failing to keep to the code.

Please note that all queries or complaints regarding your search should be directed to your search provider in the first instance, not to TPOs or to the PCCB.

TPOs Contact Details

The Property Ombudsman scheme Milford House 43-55 Milford Street Salisbury Wiltshire SP1 2BP Tel: 01722 333306 Fax: 01722 332296

Fax: 01722 332296 Web site: www.tpos.co.uk Email: admin@tpos.co.uk

You can get more information about the PCCB from www.propertycodes.org.uk

PLEASE ASK YOUR SEARCH PROVIDER IF YOU WOULD LIKE A COPY OF THE SEARCH CODE

<u>Thames Water Utilities Ltd.</u> Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T0845 070 9148Esearches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Page 11 of 11

Annex 3: Geo-Environmental and Geotechnical Assessment (Ground Investigation) Report

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

GEO-ENVIRONMENTAL & GEOTECHNICAL ASSESSMENT (GROUND INVESTIGATION) REPORT

WOKING FOOTBALL CLUB, LAITHWAITE COMMUNITY STADIUM, KINGFIELD ROAD, WOKING, GU22 9AA

JOMAS ASSOCIATES LTD

6-9 The Square, Stockley Park, Uxbridge, UB11 1FW www.jomasassociates.com 0843-289-2187 info@jomasassociates.com

(JONAS)

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the Uk

Report Title: Geo-environmental & Geotechnical Assessment Ground Investigation Report for

Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA

Report Status: Final v1.2

Job No: P1381J1460/AMM

Date: 21st November 2019

QUALITY CONTROL – PREVIOUS RELEASE

Version	Date	Issued By
Final v1.1	12th November 2019	AM
Final v1.0	30th April 2019	AM

Prepared by: JOMAS ASSOCIATES LTD For: WOKING FOOTBALL CLUB

Prepared by

Shaw Carter BSc (Hons), FGS

Geotechnical Engineer

Reviewed by

Peter Swettenham BSc (Hons) MSc PgCert CEnv MIEnvSc

Principal Geotechnical Engineer

Approved by

Suneel Law BSc (Hons), MSc,

Principal Geo-environmental

Engineer

Should you have any queries relating to this report, please contact

JOMAS ASSOCIATES LTD

www.jomasassociates.com

0843 289 2187 info@jomasassociates.com

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

CONTENTS

	Page
EX	ECUTIVE SUMMARYV
1	INTRODUCTION
1.1	Terms of Reference
1.2	Proposed Development
1.3	Objectives2
1.4	Scope of Works2
1.5	Limitations2
2	SITE SETTING
2.1	Site Information4
2.2	Desk Study Overview4
3	GROUND INVESTIGATION
3.1	Rationale for Ground Investigation7
3.2	Scope of Ground Investigation7
3.3	In-situ Geotechnical Testing8
3.4	Sampling Rationale8
3.5	Sampling Limitations9
3.6	Laboratory Analysis9
4	GROUND CONDITIONS12
4.1	Soil
4.2	Hydrogeology13
4.3	Physical and Olfactory Evidence of Contamination14
5	RISK ASSESSMENT – ANALYTICAL FRAMEWORK15
5.1	Context and Objectives15

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the Uk

5.2	Analytical Framework – Soils15
5.3	BRE
6	GENERIC QUANTITATIVE RISK ASSESSMENT17
6.1	Screening of Soil Chemical Analysis Results – Human Health Risk Assessment17
6.2	Volatile Organic Compounds19
6.3	Vapour Risk Assessment from a Soil Source19
6.4	Asbestos in Soil20
6.5	Controlled Groundwater Risk Assessment
6.6	Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth22
6.7	Screening for Water Pipes22
6.8	Waste Disposal23
7	SOIL GAS RISK ASSESSMENT24
7.1	Soil Gas Results24
7.2	Screening of Results24
7.3	Carbon Monoxide and Volatile Organic Compounds
8	SUMMARY OF RESULTS28
8.1	Land Quality Impact Summary28
8.2	Review of Pollutant Linkages Following Site Investigation29
9	GEOTECHNICAL ENGINEERING RECOMMENDATIONS31
9.1	Ground Investigation Summary31
9.2	Geotechnical Classification
9.3	Data Summary31
9.4	Standard Penetration Tests
9.5	Building Near Trees
9.6	Foundations35

WE LISTEN, WE PLAN, WE DELIVER

Reptechnical Engineering and Environmental Services across the UK

9.7	Retaining Walls	37
9.8	Ground Floor Slabs	37
9.9	Concrete in the Ground	38
9.10	Excavations	39
9.11	Groundwater Control	39
9.12	In Situ CBR Measurements	40
10	REFERENCES	42

APPENDICES

APPENDIX 1 – FIGURES

APPENDIX 2 – EXPLORATORY HOLE RECORDS

APPENDIX 3 – CHEMICAL LABORATORY TEST RESULTS

APPENDIX 4 – GEOTECHNICAL LABORATORY TEST RESULTS

APPENDIX 5 – SOIL GAS AND GROUNDWATER MONITORING RECORDS

APPENDIX 6 – CALIFORNIA BEARING RATIO TEST RESULTS

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

Woking Football Club commissioned Jomas Associates Ltd to undertake a Geo-environmental and Geotechnical ground investigation at the site Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA

The principle objectives of the study were as follows:

- To determine the nature and where possible, the extent of contaminants potentially present at the site;
- To establish the presence of significant pollutant linkages, in accordance with the procedures set out within the Environment Agency (EA) report R&D CLR11 and relevant guidance within the National Planning Policy Framework (NPPF);
- To assess whether the site is safe and suitable for the purpose for which it is intended, or can be made so by remedial action; and,
- To obtain geotechnical parameters to inform preliminary foundation design.

It should be noted that the table below is an executive summary of the findings of this report and is for briefing purposes only. Reference should be made to the main report for detailed information and analysis.

	Site History and Ground Investigation
Current Site Use	Commercial football ground with other leisure facilities.
Proposed Site Use	Mixed use residential and commercial development comprising residential flats surrounding a new football ground.
Desk Study Overview	A Desk Study report has been produced for the site and issued separately (Jomas, August 2018). A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.
	A review of earliest available (1871) historical maps indicates that the site comprised undeveloped and/or agricultural land. From the 1934 plan development is noted on site as consisting of a sports ground, including tennis courts towards the south and pavilions. Areas of worked ground are noted on this plan. Residential building development is noted within the northern part of the site in 1966. Large building developments are noted on the plan 1992 comprising a tennis centre, gymnasium and snooker hall.
	The site vicinity on the earliest available plan comprised predominately undeveloped and/or agricultural land. A large pond is located directly east of site, an inland river is also located towards the north of site. The site vicinity shows consistent building development noted as detached residential buildings. No significant changes to the site vicinity are noted from 1966 to the most recent historical map 2014.
	A historic landfill site is recorded 41m west of the site.
	The British Geological Survey indicates that the site is mainly directly underlain by superficial deposits of Kempton Park Gravel Member with deposits of Alluvium reported to encroach over the northern boundary of site. These superficial deposits are underlain by solid deposits of the Bagshot Formation; deposits of the London Clay Formation are reported to encroach onto site along the south eastern boundary. The London Clay Formation underlies the Bagshot Formation.
	Given the identified site history a thickness of Made Ground should be expected.
	The superficial deposits directly underlying the site, and the Bagshot Formation are identified as a Secondary A Aquifer. The London Clay Formation is identified as Unproductive.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

EXECUTIVE SUMMARY

	Site History and Ground Investigation
	A review of the Envirolnsight Report indicates that there are no source protection zones within 500m of the site.
	There are no groundwater, surface water or potable water abstractions reported within 1km of the site.
	The nearest detailed river entry is reported 39m north of the site, identified as How Stream. The nearest surface water entry is located 9m east, identified as a pond.
	The nearest reported Environment Agency Zone 2 floodplains is reported 16m north of site. The nearest Zone 3 floodplain is located 26m north of site.
Intrusive Investigation	The ground investigation was undertaken on 4 th , 5 th , 6 th , 19 th & 20 th March 2019, and consisted of the following:
	10No. window sampling boreholes, drilled up to 4.45m below ground level (bgl), with associated in situ testing and sampling;
	4No. cable percussive boreholes, drilled up to 25mbgl, with associated in situ testing and sampling;
	California Bearing Ratio tests conducted within 4No. of the boreholes;
	Laboratory analysis for chemical and geotechnical purposes;
	4No. return visits to monitor ground gas concentrations and groundwater levels have been completed.
Ground Conditions	The results of the ground investigation revealed a ground profile comprising Made Ground up to 1.4mbgl; overlying Kempton Park Gravel Member up to 4.15mbgl; overlying Bagshot Formation to the base of the deepest borehole at 25.00mbgl.
	During the investigation groundwater was reported within Window Sample boreholes WS1, WS2, WS6, WS7, WS8, WS9 and WS10 at depths of between 1.1m and 3.0m bgl depth. Groundwater was also reported as being struck at 2.9m and 3.4m bgl within cable percussive boreholes BH3 and BH4 respectively. Groundwater was not reported within the remaining boreholes.
	During return monitoring groundwater was reported at depths of between 1.21m and 2.59m bgl.
Environmental Considerations	Following generic risk assessments and statistical analysis, elevated concentrations of lead, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene and dibenzo(ah)anthracene were detected in soils in excess of generic assessment criteria for the protection of human health within a residential without plant uptake end-use scenario.
	Asbestos in the form of amosite, chrysotile and crocidolite (both loose fibres and hard/cement type material) was detected in 2No. samples analysed in the laboratory.
	Any visual asbestos materials may be removed by hand, with extensive dust control measures required during the soil screening operations for the protection of site workers and nearby residents. It should be noted that asbestos fibres will not be visible to the naked eye.
	Where hardstanding or building cover is provided, no formal remedial measures are considered necessary in terms of human health, as the hard surfacing is considered to effectively encapsulate the made ground The remaining communal soft landscaping areas should have the Made Ground replaced with approximately 600mm of imported clean soil, placed on a membrane.
	Further investigation, soil sampling and assessment, including those areas which have not been accessed for ground investigation purposes, may allow areas requiring encapsulation under clean cover to be zoned and refined.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club **EXECUTIVE SUMMARY**

Site History and Ground Investigation

Figure 6 in Appendix 1 shows the areas of site that require investigation and which parts of site can be classed as 'residential without plant uptake' and 'commercial'.

A pollutant linkage to human health via vapour inhalation are not considered to exist.

A pollutant linkage to controlled waters is not considered to exist.

Calculating the Gas Screening Value using results considered to be representative of the site indicate the site should be classified as Characteristic Situation 1. Therefore, no formal gas protection measures are considered necessary. Buildings to have basement car parks built in accordance with Building Regulations (2000), Approved Document F are considered to be sufficiently protected anyway.

Material selection for potable water supply pipes should be confirmed with the relevant service provider.

A remedial strategy will be required for the proposed development.

As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out. Should any contamination be encountered, a suitably qualified environmental consultant should be informed immediately, so that adequate measures may be recommended.

Geotechnical Considerations

Based on the findings of this investigation, it is considered that traditional strip footings of 1m breadth formed at a depth in the order of 1.5mbgl within the underlying sand and gravel could be designed with an allowable bearing capacity of 80kPa. Alternatively, traditional square pads of 2m by 2m formed at a depth in the order of 2mbgl within the underlying sand and gravel could be designed with an allowable bearing capacity of 100kPa.

Basements are proposed under each residential block. It is considered likely that an excavation circa 3m deep would be required to form the basement.

In view of the results obtained to date, it is considered that cast in-situ cantilever retaining walls formed at a depth of 3mbgl could be designed with a conservative allowable bearing capacity of 150kPa.

Indicative pile capacities are provided in Table 9.2.

Where a basement is not proposed, a suspended floor slab is recommended as Made Ground in excess of 600mm thickness has been reported.

Where there is to be a basement formed using cantilever retaining walls, a ground bearing floor slab could be used.

Subject to seasonal variations, any groundwater or surface water/rainfall ingress encountered during site works could be readily dealt with by conventional pumping from a sump used to collate waters.

Groundwater exclusion in the form of sheet piling or secant piled walls could also be an option

It is recommended that the stability of all excavations should be assessed during construction. Attention is also drawn to the provisions of the Health and Safety at Work Regulations, which state that the sides of any excavations greater than 1.2m depth, into which personnel are required to enter, should be fully supported or battered back to a safe angle.

Based on the results of chemical testing, the required concrete class for Made Ground at the site is DS-2 assuming an Aggressive Chemical Environment for Concrete classification of AC-2 in accordance with the procedures outlined in BRE Special Digest 1. Concrete classes of DS1 and AC-1 can be adopted for natural soils.

EXECUTIVE SUMMARY

Site History and Ground Investigation
Interim Advice Note 73/06 Revision 1 Design Guidance for Road Pavement Foundations, suggest that a minimum permitted design CBR of 3.3% is used. Where a subgrade has a lower CBR, it is considered unsuitable support for a pavement foundation. It must therefore be permanently improved.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 1 INTRODUCTION

1 INTRODUCTION

1.1 Terms of Reference

- 1.1.1 Woking Football Club ("The Client") has commissioned Jomas Associates Ltd, to assess the risk of contamination posed by the ground conditions at a site referred to as Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA and to provide indicative recommendations for foundation design prior to the redevelopment of the site.
- To this end a Desk Study has been produced for the site and issued separately (Jomas, August 2018), followed by an intrusive investigation (detailed in this report).
- 1.1.3 This previous report undertaken for the site by Jomas is detailed in the table below:

Table 1.1: Previous Reports - Jomas

Title	Author	Reference	Date
Desk Study/Preliminary Risk Assessment Report for Woking Football Club, Laithwaite Community Stadium, Kingfield Road, Kingfield, Woking, GU22 9AA	Jomas Associates Ltd	P1381J1460/AM	17 August 2018

1.1.4 The intrusive investigation was undertaken in accordance with Jomas proposal dated 8th February 2019.

1.2 Proposed Development

1.2.1 The proposed development comprises the following:

'Redevelopment of the site, following the demolition of all existing buildings and structures, to provide a replacement stadium with ancillary facilities, including flexible retail, hospitality and community spaces, independent retail floorspace (Classes A1/A2/A3), a medical centre (Class D1) and vehicle parking, plus residential accommodation comprising of 1,048 dwellings (Class C3) within 5 buildings of varying heights of between 3 and 10 storeys (and under croft and part basement levels) on the south and west sides of the site, together with provision of new accesses from Westfield Avenue to car parking, associated landscaping and the provision of a detached residential concierge building.'

- 1.2.2 A plan of the proposed development is included in Appendix 1.
- 1.2.3 For the purposes of the contamination risk assessment, the proposed development is classified as 'Residential without plant uptake'.
- 1.2.4 For the purpose of geotechnical assessment, it is considered that the project could be classified as a Geotechnical Category (GC) 2 site in accordance with BS EN 1997. GC 2 projects are defined as involving:
 - Conventional structures.
 - Quantitative investigation and analysis.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

SECTION 1 INTRODUCTION

- Normal risk.
- No difficult soil and site conditions.
- No difficult loading conditions.
- Routine design and construction methods.

1.3 Objectives

- 1.3.1 The objectives of Jomas' investigation were as follows:
 - To conduct an intrusive investigation, to determine the nature and extent of contaminants potentially present at the site;
 - To establish the presence of significant pollutant linkages, in accordance with the procedures set out within Part IIA of the Environmental Protection Act 1990, associated statutory guidance and current best practice including the EA report R&D CLR 11; and,
 - To obtain geotechnical parameters to inform preliminary foundation design.

1.4 Scope of Works

- 1.4.1 The following tasks were undertaken to achieve the objectives listed above:
 - Intrusive ground investigation to determine shallow ground conditions, and potential for contamination at the site;
 - Undertaking of laboratory chemical and geotechnical testing upon samples obtained;
 - The compilation of this report, which collects and discusses the above data, and presents an assessment of the site conditions, conclusions and recommendations.

1.5 Limitations

- 1.5.1 Jomas Associates Ltd has prepared this report for the sole use of Woking Football Club, in accordance with the generally accepted consulting practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon by any other party without the explicit written agreement of Jomas Associates Limited. No other third party warranty, expressed or implied, is made as to the professional advice included in this report. This report must be used in its entirety.
- 1.5.2 The records search was limited to information available from public sources; this information is changing continually and frequently incomplete. Unless Jomas Associates Limited has actual knowledge to the contrary, information obtained from public sources or provided to Jomas Associates Limited by site personnel and other information sources, have been assumed to be correct. Jomas Associates Limited does not assume any liability for the misinterpretation of information or for items not visible, accessible or present on the subject property at the time of this study.
- 1.5.3 Whilst every effort has been made to ensure the accuracy of the data supplied, and any analysis derived from it, there may be conditions at the site that have not been disclosed by the investigation, and could not therefore be taken into account. As with any site, there may be differences in soil conditions between exploratory hole positions. Furthermore, it should be noted that groundwater conditions may vary due to seasonal and other effects and may at times be significantly different from those measured by the investigation. No liability can be accepted for any such variations in these conditions.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 1 INTRODUCTION

- 1.5.4 Any reports provided to Jomas Associates Limited have been reviewed in good faith. Jomas Associates Limited cannot be held liable for any errors or omissions in these reports, or for any incorrect interpretation contained within them.
- 1.5.5 This investigation and report has been carried out in accordance with the relevant standards and guidance in place at the time of the works. Future changes to these may require a reassessment of the recommendations made within this report.
- 1.5.6 This report is not an engineering design and the figures and calculations contained in the report should be used by the Structural Engineer, taking note that variations may apply, depending on variations in design loading, in techniques used, and in site conditions. Our recommendations should therefore not supersede the Engineer's design.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

SECTION 2 SITE SETTING

2 SITE SETTING

2.1 Site Information

2.1.1 The site location plan is appended to this report in Appendix 1.

Table 2.1: Site Information

Name of Site	Woking Football Club
	Laithwaite Community Stadium
	Kingfield Road
Address of Site	Kingfield
	Woking
	GU22 9AA
Approx. National Grid Ref.	500569 157301
Site Area (Approx)	5ha
Site Occupation	Mixed commercial and residential
Local Authority	Woking Borough Council

2.2 Desk Study Overview

2.2.1 A Desk Study report has been produced for the site and issued separately (Jomas, August 2018). A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.

2.2.2 A review of earliest available (1871) historical maps indicates that the site comprised undeveloped and/or agricultural land. From the 1934 plan development is noted on site as consisting of a sports ground, including a tennis courts and pavilions towards the south. Areas of worked ground are noted on this plan. Residential building development is noted within the northern part of the site in 1966. Large building developments are noted on the plan 1992 comprising a tennis centre, gymnasium and snooker hall.

2.2.3 The site vicinity on the earliest available plan comprised predominately undeveloped and/or agricultural land. A large pond is located directly east of site, an inland river is also located towards the north of site. The site vicinity shows consistent building development noted as detached residential buildings. No significant changes to the site vicinity are noted from 1966 to the most recent historical map 2014.

2.2.4 A historic landfill site is recorded 41m west of the site.

2.2.5 Information provided by the British Geological Survey indicates that the site is directly underlain by superficial deposits of Kempton Park Gravel Member with deposits of alluvium reported to encroach over the northern boundary of site. These superficial deposits are underlain by solid deposits of the Bagshot Formation; deposits of the London Clay Formation are reported to encroach onto site along the south eastern boundary. The London Clay Formation underlies the Bagshot Formation.

2.2.6 Given the identified site history a thickness of Made Ground should be expected.

2.2.7 The superficial deposits directly underlying the site, and the Bagshot Formation are identified as a Secondary A Aquifer. The London Clay Formation is identified as Unproductive.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

2.2.8	A review of the EnviroInsight Report indicates that there are no source protection zones within 500m of the site.
2.2.9	There are no groundwater, surface water or potable water abstractions reported within 1km of the site.
2.2.10	The nearest detailed river entry is reported 39m north of the site, identified as How Stream. The nearest surface water entry is located 9m east, identified as a pond.
2.2.11	The nearest reported Environment Agency Zone 2 floodplains is reported 16m north of site. The nearest Zone 3 floodplain is located 26m north of site.
2.2.12	It was recommended that an intrusive investigation be undertaken to clarify potential risks to the identified receptors. The investigation should assess the thickness of any made ground, and allow samples of made ground and natural soils to be taken for laboratory analysis.
2.2.13	It was also recommended that in accordance with BS 5930 (2015) the preliminary investigation should be combined with the geotechnical investigation.
2.2.14	Due to the presence of a historic landfill 41m west of site, soil gas monitoring was recommended.
2.2.15	The conceptual site model is reproduced in Table 2.2 overleaf.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Table 2.2: Preliminary Risk Assessment for the Site

Table 2.2. Freiininary hisk Assessment for the Site						
Sources	Pathways (P)	Receptors	Consequence of Impact	Probability of Impact	Risk Estimation	Hazard Assessment
 Potential for Made Ground associated with previous development operations – on site (S1) Potential asbestos containing 	 Ingestion and dermal contact with contaminated soil (P1) Inhalation or contact with potentially contaminated dust and vapours (P2) 	 Construction workers (R1) Maintenance workers (R2) Neighbouring site users (R3) Future site users (R4) Building foundations and on site buried services (water mains, electricity and sewer) (R5) 	Medium	Low	Moderate	GI – Ground Investigation
 materials within existing buildings – on site (S2) Potential ground gas generation from nearby landfill site (S3) 	 Permeation of water pipes and attack on concrete foundations by aggressive soil conditions (P6) 		Severe for Asbestos	Low	Moderate	
	 Accumulation and migration of soil gases (P5) 		Severe	Low	Moderate	
	 Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. (P3) Horizontal and vertical migration of contaminants within groundwater (P4) 	 Neighbouring site users (R3) Building foundations and on site buried services (water mains, electricity and sewer) (R5) Controlled waters - secondary (A) aquifer (R6) Surface water - pond located east of site, Hoe Stream 39m north (R7) 	Medium	Unlikely	Low	

SECTION 3 GROUND INVESTIGATION

3 GROUND INVESTIGATION

3.1 Rationale for Ground Investigation

- 3.1.1 The site investigation has been undertaken generally in accordance with Contaminated Land Report 11, BS10175, NHBC Standards Chapter 4.1, and other associated Statutory Guidance. If required, further targeted investigations and remedial option appraisal would be dependent on the findings of this site investigation.
- 3.1.2 The soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR).
- 3.1.3 The sampling proposal was designed in order to gather data representative of the site conditions.

3.2 Scope of Ground Investigation

- 3.2.1 The ground investigation was undertaken on 4th, 5th, 6th, 19th & 20th March 2019.
- 3.2.2 The work was undertaken in accordance with BS5930 'Code of Practice for Site Investigation' and BS10175 'Investigation of Potentially Contaminated Sites'. All works were completed without incident.
- 3.2.3 The investigation focused on collecting data on the following:
 - Quality of Made Ground/ natural ground within the site boundaries;
 - Presence of groundwater beneath the site (if any), perched or otherwise;
 - Determination of the presence or absence of hazardous ground gases;
 - Obtaining geotechnical parameters to allow initial design to take place.
- 3.2.4 A summary of the fieldwork carried out at the site, with justifications for exploratory hole positions, are offered in Table 3.1 below.

Table 3.1: Scope of Intrusive Investigation

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved (m BGL)	Justification
Window Sample Boreholes	10	WS1 – WS10	Up to 4.45mbgl	Obtain shallow samples for laboratory contamination and geotechnical testing. To allow in-situ geotechnical testing. WS7 was positioned to target a former ground working feature.
Cable Percussion Boreholes	4	BH1 – BH4	Up to 25.00mbgl	Obtain deeper samples for laboratory contamination and geotechnical testing.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

SECTION 3 GROUND INVESTIGATION

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Achieved Designation		Justification	
				To allow in-situ geotechnical testing.	
Monitoring Wells	6	BH1, BH2, BH3, WS2, WS7, WS10	Up to 5.00mbgl	Combined soil gas and groundwater monitoring wells, targeted response zones within sand deposits.	
California Bearing Ratio Tests	4	CBR1, CBR5, CBR6, CBR8	Up to 1.00mbgl	To inform roadway design.	

- 3.2.5 The exploratory holes were completed to allow soil samples to be taken in the areas of interest identified in Table 3.1 above. In all cases, all holes were logged in accordance with BS5930:2015.
- 3.2.6 Exploratory hole positions were located approximately with reference to known features on site as shown in the exploratory hole location plan presented in Appendix 1. The exploratory hole records are included in Appendix 2.
- 3.2.7 Where monitoring well installations were not installed, the exploratory holes were backfilled with the arisings (in the reverse order in which they were drilled) and the ground surface was reinstated so that no depression was left.

3.3 In-situ Geotechnical Testing

- 3.3.1 In-situ geotechnical testing included Standard Penetration Tests. The determined 'N' values have been used to determine the relative density of granular materials and have been used with standard correlations to infer various other derived geotechnical parameters including the undrained shear strength of the cohesive strata. The results of the individual tests are on the appropriate exploratory hole logs in Appendix 2.
- 3.3.2 In-situ California Bearing Ratio (CBRs) were determined across the site using the dynamic probe methodology using a Perth Penetrometer Probe and the methodology laid out in IAN 73/06. Copies of the results and calculations are provided in Appendix 6.

3.4 Sampling Rationale

- 3.4.1 Our soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR).
- 3.4.2 The exploratory holes were positioned by applying a combined non-targeted sampling strategy, as well as sample locations positioned with reference to sources identified from the desk study.
- 3.4.3 Soil samples were taken from across the site at various depths as shown in the exploratory
- 3.4.4 Jomas Associates Limited's engineers normally collect samples at appropriate depths based on field observations such as:

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 3 GROUND INVESTIGATION

- appearance, colour and odour of the strata and other materials, and changes in these;
- the presence or otherwise of sub-surface features such as pipework, tanks, foundations and walls; and,
- areas of obvious damage, e.g. to the building fabric.
- 3.4.5 A number of the samples were taken from the top 0-1m to aid in the assessment of the pollutant linkages identified at the site. In addition, some deeper samples were taken to aid in the interpretation of fate and transport of any contamination identified.
- 3.4.6 Soil samples were taken from across the site at various depths as shown in the exploratory hole logs (copies of which are provided in Appendix 2). The methodology used and type of samples taken were chosen to allow the Sampling category to be A or B according to EN ISO 22475-1. This in turn allows suitable geotechnical testing to be carried out.
- 3.4.7 Groundwater strikes noted during drilling, are recorded within the exploratory hole records in Appendix 2.
- 3.4.8 Samples were stored in cool boxes (<4°C) and preserved in accordance with laboratory guidance.

3.5 Sampling Limitations

- 3.5.1 A large part of the site could not be accessed for the investigation. This was due to the eastern part of site being occupied by an active leisure centre which the tenants did not allow access for intrusive works. The centre of site is occupied by an in-use football stadium and therefore could not be accessed for intrusive works.
- 3.5.2 WS4 was terminated at 0.50mbgl to the presence of a suspected buried service.
- 3.5.3 The remaining windowless sampler boreholes refused on very dense sand and gravel between depths of 2.45m and 4.45m bgl.
- 3.5.4 The cable percussive boreholes were drilled to their proposed depths at their proposed

3.6 Laboratory Analysis

3.6.1 A programme of laboratory testing, scheduled by Jomas Associates Limited, was carried out on selected samples of Made Ground and natural strata.

Chemical Testing

- 3.6.2 Soil samples were submitted to i2 Analytical (a UKAS and MCerts accredited laboratory), for analysis.
- 3.6.3 The samples were analysed for a wide range of contaminants as shown in Table 3.2 below:

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Table 3.2: Chemical Tests Scheduled

	No. of tests		
Test Suite	Made Ground / Topsoil	Natural	
Basic Suite S3	11	0	
Total Organic Carbon	8	0	
Asbestos Screen & ID	12	0	
Hydrocarbon Suite	5	0	
Basic Suite S5	5	0	
Water Soluble Sulphate	16*	8	

^{*}Tested for as part of Basic Suites S3 and S5

3.6.4 The determinands contained in the Basic Suite S3 are as detailed in Table 3.3 below:

Table 3.3: Basic Suite of Determinands

DETERMINAND	LIMIT OF DETECTION (mg/kg)	UKAS ACCREDITATION	TECHNIQUE
Arsenic	1	Y (MCERTS)	ICPMS
Cadmium	0.2	Y (MCERTS)	ICPMS
Chromium	1	Y (MCERTS)	ICPMS
Chromium (Hexavalent)	4	Y (MCERTS)	Colorimetry
Lead	1	Y (MCERTS)	ICPMS
Mercury	0.3	Y (MCERTS)	ICPMS
Nickel	1	Y (MCERTS)	ICPMS
Selenium	1	Y (MCERTS)	ICPMS
Copper	1	Y (MCERTS)	ICPMS
Zinc	1	Y (MCERTS)	ICPMS
Boron (Water Soluble)	0.2	Y (MCERTS)	ICPMS
pH Value	0.1 units	Y (MCERTS)	Electrometric
Sulphate (Water Soluble)	0.0125g/l	Y (MCERTS)	Ion Chromatography
Total Cyanide	1	Y (MCERTS)	Colorimetry
Speciated/Total PAH	0.05/0.80	Y (MCERTS)	GCFID
Phenols	1	Y (MCERTS)	HPLC
Total Petroleum Hydrocarbons (banded)	-	N Y (MCERTS)	Gas Chromatography

To support the selection of appropriate tier 1 screening values, 8No. samples were analysed for total organic carbon.

3.6.6 Laboratory test results are summarised in Section 6, with raw laboratory data included in Appendix 3.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 3 GROUND INVESTIGATION

Geotechnical Laboratory Testing

- 3.6.7 In addition to the contamination assessment, soil samples were submitted to the UKAS Accredited laboratory of i2 Analytical Ltd. for a series of analyses.
- 3.6.8 This testing was specifically designed to:
 - to classify the samples; and
 - to obtain parameters (either directly or sufficient to allow relevant correlations to be used) relevant to the technical objectives of the investigation.
- 3.6.9 The following laboratory geotechnical testing (as summarised in Table 3.4) was carried out:

Table 3.4 Laboratory Geotechnical Analysis

BS 1377 (1990) Test Number	Test Description	Number of tests
Part 2		
9.2 and 9.3	Particle Size Distribution - Sieving	15

- 3.6.10 The water soluble sulphate and pH results obtained as part of the chemical analysis was used in combination with BRE Special Digest 1 to allow buried concrete to be classified.
- 3.6.11 The results of the geotechnical laboratory testing are presented as Appendix 4 and discussed in Section 9 of this report.

SECTION 4 GROUND CONDITIONS

4 GROUND CONDITIONS

4.1 Soil

4.1.1 Ground conditions were logged in accordance with the requirements of BS5930:2015. Detailed exploratory hole logs are provided in Appendix 2. The ground conditions encountered are summarised in Table 4.1 below, based on the strata observed during the investigation.

Table 4.1: Ground Conditions Encountered

Stratum and Description	Encountered from (m bgl)	Base of strata (m bgl)	Thickness range (m)
Asphalt. (MADE GROUND)	0.0	0.05 – 0.20	0.05 – 0.20
Brown sandy gravelly clay with rootlets. Sand is fine. Gravel consists of flint, concrete, brick and asphalt fragments. (MADE GROUND – Topsoil) Encountered in WS4 and WS5 only	0.0	0.30 – 0.50	0.30 - 0.50
Black to brown slightly clayey sandy gravel. Sand is fine to medium. Gravel consists of flint, brick, concrete, asphalt, glass and ceramic fragments. (MADE GROUND)	0.05 – 0.30	0.30 – 1.10	0.18 – 1.15
Black to brown clayey gravelly sand. Sand is medium. Gravel consists of fine to coarse flint and asphalt fragments. (MADE GROUND)	0.30 – 1.10	0.70 – 1.40	0.25 – 0.90
Loose to very dense orange to grey silty clayey very gravelly SAND. Sand is fine. Gravel consists of flint. (KEMPTON PARK GRAVEL)	0.30 – 1.40	2.00 – 4.15	0.70 – 3.20
Medium to very dense grey silty SAND. Sand is medium to coarse. (BAGSHOT FORMATION)	2.00 – 3.60	3.75 – 25.00	0.85 – 22.30

- 4.1.2 Given the likely ground strata profile identified in the Desk Study and the BGS descriptions of the materials given in Section 3 of the Desk Study it is considered that the encountered strata represents Made Ground up to 1.4mbgl; overlying Kempton Park Gravel Member up to 4.15mbgl; overlying Bagshot Formation to the base of the deepest borehole at 25.00mbgl.
- 4.1.3 Given the BGS descriptions given for the strata, it has been difficult to differentiate the Kempton Park Gravel Member and Bagshot Formation.
- 4.1.4 No materials considered to represent the Alluvium or London Clay Formation that was noted in Section 3 of the Desk Study as likely to lie beneath the site were encountered.

12

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 4 GROUND CONDITIONS

4.2 Hydrogeology

4.2.1 Groundwater strikes and groundwater monitoring are summarised below.

Table 4.2: Groundwater Strikes During Drilling

Exploratory Hole ID	Depth Encountered (mbgl)	Depth After 20mins (mbgl)	Stratum
WS1	3.0	-	Bagshot Formation
WS2	3.0	-	Kempton Park Gravel Member
WS3	-	-	-
WS4	-	-	-
WS5	-	-	-
WS6	2.1	-	Kempton Park Gravel Member
WS7	2.7	-	Kempton Park Gravel Member
WS8	1.1	1.6	Kempton Park Gravel Member
WS9	1.5	-	Kempton Park Gravel Member
WS10	3.0	-	Bagshot Formation
BH1	-	-	-
BH2	-	-	-
вн3	2.9	2.7	Bagshot Formation
ВН4	3.4	2.9	Bagshot Formation

4.2.2 4No. return groundwater monitoring visits were undertaken between 14th March and 2nd April 2019. The results are summarised below.

13

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Table 4.3: Groundwater Monitoring Records

Exploratory Hole ID	Depth Encountered (m bgl)	Depth to Base of Well (m bgl)	Strata targeted by response zone
WS2	2.45 - 2.59	3.04 - 3.06	Made Ground Kempton Park Gravel Member
WS7	1.81 - 2.28	3.04 - 3.07	Made Ground Kempton Park Gravel Member
WS10	1.69 - 1.95	2.87 - 2.95	Kempton Park Gravel Member Bagshot Formation
BH1	1.75 - 2.07	4.87 - 4.97	Made Ground Kempton Park Gravel Member Bagshot Formation
BH2	1.82 - 2.07	3.10 - 3.15	Bagshot Formation
ВН3	1.21 - 1.49	4.52 - 4.54	Kempton Park Gravel Member Bagshot Formation
НВН2	2.45 - 2.59	3.04 - 3.06	Unknown
НВН4	1.81 - 2.28	3.04 - 3.07	Unknown

- 4.2.3 The water encountered generally decreased slightly on each monitoring visit. This is likely a result in the change in volume of rainfall through March to April.
- 4.2.4 HBH2 and HBH4 are both historic boreholes. Jomas has not been provided with the logs or any testing for these holes. Consequently, the installation details are not known and the strata within which the standing water was observed cannot be accurately determined. However, given the depths of the recorded groundwater levels it is considered likely to be as per the other locations.

4.3 Physical and Olfactory Evidence of Contamination

- 4.3.1 Asphalt was reported in the Made Ground of WS1, WS2, WS3, WS4, WS6, WS7, WS8, WS9 and WS10.
- 4.3.2 Ash was reported in the Made Ground of WS2.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 5 RISK ASSESSMENT – ANALYTICAL FRAMEWORK

5 RISK ASSESSMENT – ANALYTICAL FRAMEWORK

5.1 Context and Objectives

5.1.1

- This section seeks to evaluate the level of risk pertaining to human health and the environment which may result from both the existing use and proposed future use of the site. It makes use of the site investigation findings, as described in the previous sections, to evaluate further the potential pollutant linkages identified in the desk study. A combination of qualitative and quantitative techniques is used, as described below.
- 5.1.2 The purpose of generic quantitative risk assessment is to compare concentrations of contaminants found on site against screening level generic assessment criteria (GAC) to establish whether there are actual or potential unacceptable risks. It also determines whether further detailed assessment is required. The approaches detailed all broadly fit within a tiered assessment structure in line with the framework set out in the Department of Environment, Food and Rural Affairs (DEFRA), EA and Institute for Environment and Health Publication, Guidelines for Environmental Risk Assessment and Management.
- 5.1.3 It should be noted that the statistical tests carried out in this report in accordance with CL:AIRE and CIEH (2008) recommendations, are for guidance purposes only and the conclusions of this report should be approved by the local authority prior to any redevelopment works being undertaken.

5.2 Analytical Framework – Soils

- 5.2.1 There is no single methodology that covers all the various aspects of the assessment of potentially contaminated land and groundwater. Therefore, the analytical framework adopted for this investigation is made up of a number of procedures, which are outlined below. All of these are based on a Risk Assessment methodology centred on the identification and analysis of Source Pathway Receptor linkages.
- 5.2.2 The CLEA model provides a methodology for quantitative assessment of the long term risks posed to human health by exposure to contaminated soils. Toxicological data have been used to calculate Soil Guideline Values (SGV) for individual contaminants, based on the proposed site use; these represent minimal risk concentrations and may be used as screening values.
- In the absence of any published SGVs for certain substances, or where the assumptions made in generating the SGVs do not apply to the site, Jomas Associates Limited have obtained Tier 1 screening values for initial assessment of the soil, based on available current UK guidance including the LQM/CIEH S4ULs and DEFRA C4SL. Site-specific assessments are undertaken wherever possible and/or applicable. All assessments are carried out in accordance with the CLEA protocol.
- 5.2.4 CLEA requires a statistical treatment of the test results to take into account the normal variations in concentration of potential contaminants in the soil and allow comparisons to be made with published guidance.
- 5.2.5 The assessment criteria used for the screening of determinands within soils are identified within Table 5.1.

Table 5.1: Selected Assessment Criteria – Contaminants in Soils

Substance Group	Determinand(s)	Assessment Criteria Selected
Organic Substances		
Non-halogenated Hydrocarbons	Total Petroleum Hydrocarbons (TPHCWG banded)	S4UL
	Total Phenols	S4UL
Polycyclic Aromatic Hydrocarbons (PAH-16)	Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenzo(a,h)anthracene, Benzo(ghi)perylene	S4UL
Volatile Organic Compounds (VOCs/sVOCs).	Toluene, Ethylbenzene, Benzene, Xylenes	S4UL
Inorganic Substances		
Heavy Metals and Metalloids	Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium, Copper, Zinc	S4UL
	Copper, Zinc, Nickel	BS: 3882 (2015).
Cyanides	Free Cyanide	CLEA v1.06
Sulphates	Water Soluble Sulphate	BRE Special Digest 1:2005

- 5.2.6 As the published reports only offer the option of selecting a SOM value of 1%, 2.5% or 6%, a SOM value of 1% has been used for the selection of generic assessment criteria, as 1.225% was the mean value obtained from laboratory analysis.
- 5.2.7 It is understood that the site is to be redeveloped to provide residential units with associated communal soft landscaping. As a result, the site has been assessed with regards to a residential without plant uptake end use scenario.
- 5.3 BRE
- 5.3.1 The BRE Special Digest 1:2005, 'Concrete in Aggressive Ground' is used with soluble sulphate and pH results to assess the aggressive chemical environment of future underground concrete structures at the site.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club SECTION 6
GENERIC QUANTITATIVE RISK
ASSESSMENT

6 GENERIC QUANTITATIVE RISK ASSESSMENT

6.1 Screening of Soil Chemical Analysis Results – Human Health Risk Assessment

6.1.1 Laboratory analysis for soils are summarised in Tables 6.1 to 6.3. Raw laboratory data is included in Appendix 3.

Table 6.1: Soil Laboratory Analysis Results – Metals, Metalloids, Phenol, Cyanide

Determinand	Unit	No. samples tested	Screenin	g Criteria	Min	Max	No. Exceeding
Arsenic	mg/kg	16	S4UL	40	5.0	40	0
Cadmium	mg/kg	16	S4UL	85	<0.2	1.4	0
Chromium	mg/kg	16	S4UL	910	7.3	23	0
Lead	mg/kg	16	C4SL	310	9.3	930	1No exceedance: WS1 (0.50m)
Mercury	mg/kg	16	S4UL	56	<0.3	3.0	0
Nickel	mg/kg	16	S4UL	180	3.7	33	0
Copper	mg/kg	16	S4UL	7100	7.3	140	0
Zinc	mg/kg	16	S4UL	40000	18	380	0
Total Cyanide ^A	mg/kg	16	CLEA v 1.06	33	<1	<1	0
Selenium	mg/kg	16	S4UL	430	<1.0	<1.0	0
Boron Water Soluble	mg/kg	16	S4UL	11000	0.3	11	0
Phenols	mg/kg	16	S4UL	440	<1.0	<1.0	0

Notes: A Generic assessment criteria derived for free inorganic cyanide.

Table 6.2: Soil Laboratory Analysis Results – Polycyclic Aromatic Hydrocarbons (PAHs)

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
Naphthalene	mg/kg	16	S4UL	2.3	<0.05	<0.05	0
Acenaphthylene	mg/kg	16	S4UL	2900	<0.05	0.77	0
Acenaphthene	mg/kg	16	S4UL	3000	<0.05	2.1	0
Fluorene	mg/kg	16	S4UL	2800	<0.05	1.8	0
Phenanthrene	mg/kg	16	S4UL	1300	<0.05	33	0
Anthracene	mg/kg	16	S4UL	2300	<0.05	10	0
Fluoranthene	mg/kg	16	S4UL	1500	<0.05	45	0
Pyrene	mg/kg	16	S4UL	3700	<0.05	37	0
Benzo(a)anthracene	mg/kg	16	S4UL	11	<0.05	21	1No exceedance: WS2 (0.50m)

17

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

SECTION 6 GENERIC QUANTITATIVE RISK ASSESSMENT

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
Chrysene	mg/kg	16	S4UL	30	<0.05	17	0
Benzo(b)fluoranthene	mg/kg	16	S4UL	3.9	<0.05	21	1No exceedance: WS2 (0.50m)
Benzo(k)fluoranthene	mg/kg	16	S4UL	110	<0.05	8.7	0
Benzo(a)pyrene	mg/kg	16	S4UL	3.2	<0.05	18	1No exceedance: WS2 (0.50m)
Indeno(123-cd)pyrene	mg/kg	16	S4UL	45	<0.05	7.9	0
Dibenzo(ah)anthracene	mg/kg	16	S4UL	0.31	<0.05	2.6	3No exceedances: WS1 (0.50m) WS2 (0.50m) WS9 (0.20m)
Benzo(ghi)perylene	mg/kg	16	S4UL	360	<0.05	9.0	0
Total PAH	mg/kg	16	-	-	<0.80	234	-

Table 6.3: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPH)

TPH Band	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
C ₈ -C ₁₀	mg/kg	11	S4UL	27	<0.1	<0.1	0
>C ₁₀ -C ₁₂	mg/kg	11	S4UL	130	<2.0	<2.0	0
>C ₁₂ -C ₁₆	mg/kg	11	S4UL	1100	<4.0	20	0
>C ₁₆ -C ₂₁	mg/kg	11	S4UL	1900	<1.0	270	0
>C ₂₁ -C ₃₅	mg/kg	11	S4UL	1900	<10	1200	0
Total TPH	mg/kg	11	-	-	<17.1	1490.1	-

Note: *The lower value of guidelines for Aromatic/Aliphatics has been selected

Table 6.4: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPHCWG)

TPH Band	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
>C ₅ -C ₆ Aliphatic	mg/kg	5	S4UL	42	<0.001	<0.001	0
>C ₆ -C ₈ Aliphatic	mg/kg	5	S4UL	100	<0.001	<0.001	0
>C ₈ -C ₁₀ Aliphatic	mg/kg	5	S4UL	27	<0.001	<0.001	0
>C ₁₀ -C ₁₂ Aliphatic	mg/kg	5	S4UL	130	<1.0	<1.0	0
>C ₁₂ -C ₁₆ Aliphatic	mg/kg	5	S4UL	1100	<2.0	<2.0	0
>C ₁₆ -C ₃₅ Aliphatic	mg/kg	5	S4UL	65000	<16.0	20	0
>C ₅ -C ₇ Aromatic	mg/kg	5	S4UL	370	<0.001	<0.001	0

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 6
GENERIC QUANTITATIVE RISK ASSESSMENT

TPH Band	Unit	No. Samples Tested	Screening (Criteria	Min	Max	No. Exceeding
>C ₇ -C ₈ Aromatic	mg/kg	5	S4UL	860	<0.001	<0.001	0
>C ₈ -C ₁₀ Aromatic	mg/kg	5	S4UL	47	<0.001	<0.001	0
>C ₁₀ -C ₁₂ Aromatic	mg/kg	5	S4UL	250	<1.0	<1.0	0
>C ₁₂ -C ₁₆ Aromatic	mg/kg	5	S4UL	1800	<2.0	<2.0	0
>C ₁₆ -C ₂₁ Aromatic	mg/kg	5	S4UL	1900	<10	<10	0
>C ₂₁ -C ₃₅ Aromatic	mg/kg	5	S4UL	1900	<10	20	0
Total TPH (Ali/Aro)	mg/kg	5	-	-	<20	37	-

6.2 Volatile Organic Compounds

- 6.2.1 In addition to the suites outlined previously, 5No samples were tested for the presence of volatile organic compounds including BTEX compounds (benzene, toluene, ethylbenzene, xylene).
- 6.2.2 No VOCs were reported above the laboratory detection limit within any tested sample.

6.3 Vapour Risk Assessment from a Soil Source

As outlined in Table 6.2, a number of polyaromatic hydrocarbons have been found in excess of their generic screening criteria for the protection of human health within a 'residential without plant uptake' end-use scenario. The generic screening criteria considers all possible pathways between the source and the receptor. In order to assess potential risks from inhalation of vapour, each organic compound that has been found in excess of its GAC will be assessed in terms of the contribution to total exposure from vapour inhalation inside a structure as reported within the LQM/CIEH S4UL document. Where a significant proportion of the total exposure is reported from vapour inhalation, there could be a potential risk from vapour inhalation.

Table 6.5: Soil Laboratory Analysis Results - Contribution to Total Exposure from Vapour Inhalation (Indoor)

Compound	Contribution of Vapour Inhalation to Total Exposure (%)	Screening Criteria (mg/kg)	Maximum recorded value (mg/kg)	Potential Vapour Risk?
Benzo(b)fluoranthene	<0.1	3.9	21	х
Benzo(a)pyrene	0.0	3.2	18	х
Dibenzo(ah)anthracene	<0.1	0.31	2.6	х

- As shown in the table above, all of the PAHs detected in soils in excess of generic assessment criteria have a negligible contribution to total exposure via inhalation pathway (less or equal to 0.1%).
- 6.3.3 Therefore, it is considered that there is a negligible risk to end users of the proposed development associated with vapour risk inhalation from soils.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

SECTION 6 GENERIC QUANTITATIVE RISK ASSESSMENT

6.4 Asbestos in Soil

6.4.1 12No samples of the Made Ground were screened in the laboratory for the presence of asbestos. The analysis is summarised below in Table 6.6 below

Table 6.6: Asbestos Analysis – Summary

Sample	Screening result.	Quantification result (%)	Comments
WS1 (0.50m)	None Detected	N/A	N/A
WS2 (0.50m)	None Detected	N/A	N/A
WS3 (0.40m)	Detected	<0.001	Amosite (Loose fibres)
WS4 (0.25m)	None Detected	N/A	N/A
WS5 (0.25m)	None Detected	N/A	N/A
WS6 (0.30m)	None Detected	N/A	N/A
WS7 (0.50m)	None Detected	N/A	N/A
WS7 (1.00m)	None Detected	N/A	N/A
WS8 (0.30m)	None Detected	N/A	N/A
WS9 (0.20m)	None Detected	N/A	N/A
WS10 (0.25m)	None Detected	N/A	N/A
BH1 (0.20m)	Detected	0.013	Chrysotile and Crocidolite (Hard/Cement Type Material and Loose Fibres)

- 6.4.2 The results reported an asbestos content of below 0.1%, the fibre content at which arisings are considered hazardous for the purpose of disposal.
- 6.4.3 It should be noted that for the purposes of human health assessment there is no level of asbestos below which it is deemed the materials are considered suitable for use without risk mitigation.

6.5 Controlled Groundwater Risk Assessment

- 6.5.1 As outlined in the Table 6.2 above, a number of polyaromatic hydrocarbons have been found in excess of their generic screening criteria for the protection of human health within a 'residential without plant uptake' end-use scenario. The generic screening criteria considers all possible pathways between the source and the receptor.
- 6.5.2 The only PAHs with stated "moderate" or "high" mobility rankings in groundwater (as per CL:AIRE, 2017) are naphthalene, acenaphthylene, and acenaphthene. Of these compounds, only naphthalene has a statutory water quality standard. As naphthalene was not found to exceed its screening criteria, the levels of PAHs in water are not considered to pose a risk to sensitive receptors.
- **6.5.3** Furthermore, given that the site does not lie within a Source Protection Zone, and there are no potable, ground water or surface water abstractions within 1km of the site, a pollutant linkage is not considered to exist in this regard.

20

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 6 GENERIC QUANTITATIVE RISK ASSESSMENT

Although the Hoe Stream is located 39m north of the site, given the levels of contaminants detected in soils, and the lack of evidence of any potentially mobile contamination, a pollutant linkage is not considered to exist with regards this receptor.

21

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

SECTION 6 GENERIC QUANTITATIVE RISK ASSESSMENT

6.6 Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth

- 6.6.1 Zinc, copper and nickel are phytotoxins and could therefore inhibit plant growth in soft landscaped areas. Concentrations measured in soil for these determinands have been compared with the pH dependent values given in BS: 3882 (2015).
- 6.6.2 Adopting a pH value of greater than 7, as indicated by the results of the laboratory analysis, the following is noted;

Table 6.7: Soil Laboratory Analysis Results - Phytotoxic Determinands

Determinand	Threshold level (mg/kg)	Min (mg/kg)	Max (mg/kg)	No. Exceeding
Zinc	300	18	380	1No exceedance: WS1 (0.50m)
Copper	200	7.3	140	0
Nickel	110	3.7	33	0

6.7 Screening for Water Pipes

6.7.1 The results of the analysis have been assessed for potential impact upon water supply pipes. Table 6.8 below summarises the findings of the assessment:

Table 6.8: Screening Guide for Water Pipes

	No. of	Threshold	Value for sit	te data (mg/kg)	
Determinand	tests	adopted for PE (mg/kg)	Min	Max	No of Exceedances
Total VOCs	5	0.5	<0.056*	<0.056*	0
BTEX	5	0.1	<0.005*	<0.005*	0
MTBE	5	0.1	<0.001*	<0.001*	0
EC5-EC10	16	1	<0.006*	<0.1*	0
EC10-EC16	16	10	<6.0*	22.0	1No exceedance: WS2 (0.50m)
EC16-EC40	16	500	<11.0*	1470	4No exceedances: WS2 (0.50m) WS3 (0.40m) WS6 (0.30m) WS9 (0.20m)
Naphthalene	16	5	<0.05*	<0.05*	0
Phenols	16	2	<1.0*	<1.0*	0

^{*}Laboratory detection limit

6.7.3 The above suggests that upgraded pipe work may be required.

6.7.4 Alternatively, it may be possible to utilise other protection methods including (but not limited to):

22

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 6 GENERIC QUANTITATIVE RISK ASSESSMENT

- diversion of the pipe,
- localised remediation
- embedding the pipe in a sufficient thickness of clean granular material
- 6.7.5 The water supply pipe requirements for this site should be discussed at an early stage with the relevant Utility provider.

6.8 Waste Disposal

6.8.1 The classification of materials for waste disposal purposes was outside the scope of this report.

Should quantities of material require off-site disposal, Waste Acceptance Criteria testing will be required.

23

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

7 SOIL GAS RISK ASSESSMENT

7.1 Soil Gas Results

- 7.1.1 Four return monitoring visits have been undertaken from 14th March to 2nd April 2019, to monitor wells installed within boreholes at the site for soil gas concentrations and groundwater levels.
- 7.1.2 During these visits atmospheric pressure ranged between 1000mb and 1035mb. During these visits pressure trends observed were static and falling.
- 7.1.3 The results of the monitoring undertaken are summarised in Table 7.1 below, with the monitoring records presented in Appendix 5.

Table 7.1: Summary of Gas Monitoring Data

Hole No.	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	H ₂ S (ppm)	VOCs (ppm)	Steady Flow Rate (I/hr)	Peak Flow Rate (I/hr)	Depth to water (m bgl)	Depth of installation (m bgl)
WS2	0.0	3.0 – 7.2	8.3 – 15.9	0	<1.0	0.0 - 0.1	0.0 - 0.1	2.45 - 2.59	3.04 - 3.06
WS7	0.0	0.3 – 1.5	16.9 – 19.2	0	<1.0	0.0 - 0.1	0.0 - 0.1	1.81 - 2.28	3.04 - 3.07
WS10	0.0 - 0.4	2.0 – 5.7	1.5 – 14.7	0	<1.0	0.0 - 0.1	0.0 - 0.1	1.69 - 1.95	2.87 - 2.95
BH1	0.0	3.1 – 4.5	13.6 – 15.3	0	<1.0	0.0 - 0.1	0.0 - 0.1	1.75 - 2.07	4.87 - 4.97
BH2	0.0	3.3 – 4.9	3.5 – 6.5	0	1.0 - 3.8	0.2 - 0.2	0.2	1.82 - 2.07	3.10 - 3.15
вн3	0.0	0.0 - 0.1	19.4 – 19.8	0-1	2.0 - 2.3	-3.7 – -3.8	-18.6	1.21 - 1.49	4.52 - 4.54
нвн2*	0.0 - 1.3	0.2 - 5.7	5.5 – 15.3	0	0.4	0.0	-0.1 - +0.9	2.45 - 2.59	3.04 - 3.06
НВН4*	0.0	1.4 – 2.5	13.5 – 19.2	0	0.4	0.0	0.0	1.81 - 2.28	3.04 - 3.07

^{*}Historic third-party borehole

- 7.1.4 On the final visit (02 April 2019) BH3 could not be monitored due to a car parked over the well.

 Steps were taken to locate the owner but no-one came to move the vehicle whilst the Jomas engineer was on site.
- 7.1.5 It should be noted that HBH2 and HBH4 are boreholes installed by a third-party. Dates, logs and installation details are unknown and as such the data obtained from these positions should be treated with caution.

7.2 Screening of Results

- 7.2.1 As shown in Table 7.1, methane has been reported to a maximum concentration of 0.4% v/v. Carbon dioxide has been reported to a maximum concentration of 7.2% v/v. Screening of the monitoring well headspaces with a photo-ionisation detector (PID) has detected Volatile Organic Compounds (VOC) to a maximum concentration of 3.8ppm.
- 7.2.2 A maximum flow rate of -18.6l/hr has been reported within BH3. However, this result is considered to be uncharacteristically high and the steady flow rate of -3.8l/hr has been adopted instead.
- 7.2.3 In the assessment of risks posed by hazardous ground gases and selection of appropriate mitigation measures, BS8485 (2015) identifies four types of development, termed Type A to Type D.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 7 SOIL GAS RISK ASSESSMENT

7.2.4 Type B buildings are defined as:

"...private or commercial property with central building management control of any alterations to the building or its uses but limited or no central building management control of the maintenance of the building, including the gas protection measures. Multiple occupancy. Small to medium size rooms with passive ventilation of rooms and other internal spaces throughout ground floor and basement areas. May be conventional building or civil engineering construction. Examples include managed apartments, multiple occupancy offices, some retail premises and parts of some public buildings (such as schools, hospitals, leisure centres) and parts of hotels."

- 7.2.5 Type B has been adopted as the relevant category for the proposed residential development. It is has been initially adopted for the whole site as this would also cover things like offices, retail units etc that form part of the stadium. However, this would need to be confirmed on receipt of a design for the stadium
- 7.2.6 The soil gas assessment method is based on that proposed by Wilson & Card (1999), which was a development of a method proposed in CIRIA publication R149 (CIRIA, 1995). The method uses both gas concentrations and borehole flow rates to define a characteristic situation based on the limiting borehole gas volume flow for methane and carbon dioxide. In both these methods, the limiting borehole gas volume flow is renamed as the Gas Screening Value (GSV).
- 7.2.7 The Gas Screening Value (litres of gas per hour) is calculated by using the following equation

GSV = (Concentration/100) X Flow rate

Where concentration is measured in percent (%) and flow rate is measured in litres per hour (I/hr)

- 7.2.8 The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.
- 7.2.9 A worst case flow rate of 3.8l/hr (maximum reported) will be used in the calculation of GSVs for the site. The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.
- 7.2.10 To accord with C665, worst case conditions are used in the calculation of GSVs for the site. These have been summarised below in Table 7.2

Table 7.2: Summary of Gas Monitoring Data - Peak Flow Rate

Gas	Concentration (v/v %)	Peak Flow Rate (I/hr)	GSV (I/hr)	Characteristic Situation (after CIRIA C665)
CO ₂	7.2	3.8	0.2736	2
CH ₄	1.3	3.8	0.0494	1

7.2.11 The methodology set out in BS 8485 (2015) has been used for determining the required gas protection measures. For a Type B development on a CS2 site, the gas protection measures must provide a minimum of 3.5 points.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

SECTION 7 SOIL GAS RISK ASSESSMENT

- 7.2.12 Although the site is classed as CS2 using worst-case results, this is not considered to be representative of the site as a whole. The maximum flow rate and maximum concentration of CO₂ were detected at opposite ends of the site (BH3 in south and WS2 in north). BH3 detected CH₄ and CO₂ at concentrations ≤0.1l/hr and even using the maximum flow rate of -18.6l/hr would result in a classification of CS1.
- 7.2.13 The high negative flow rates in BH3 can may be attributed to a 'piston' effect caused by high water level in the standpipe. It is evident form the data set these flow rate is not charachterisitc of the site as a whole. The next highest flow rate (excluding BH3) was +0.9l/hr. This flow rate has been adopted as the *characteristic* flow rate of the site, and is considered conservative as in all other wells flow rates have not exceeded 0.2 l/hr.

Table 7.3: Summary of Gas Monitoring Data - Characteristic Flow Rate

Gas	Concentration (v/v %)	Characteristic Flow Rate (l/hr)	GSV (I/hr)	Characteristic Situation (after CIRIA C665)
CO ₂	7.2	0.9	0.0648	1
CH ₄	1.3	0.9	0.117	1

- 7.2.14 For any development on a CS1 site, no formal gas protection measures are considered necessary.
- Nevertheless, it is understood that approximately half the site (including where BH3 is located) will be redeveloped into residential blocks with basement car parks. It is assumed that these will be formed in accordance with Building Regulations (2000), Approved Document F. Therefore, due to the basement car park being well ventilated this will provide a score of '4' in accordance with BS: 8485. Parts of the basement which are not fully ventilated will still provide scores of 2.0 or 2.5 if the basement floors and walls conform to BS 8102:2009, Grade 2 waterproofing or Grade 3 waterproofing respectively. These measures will provide extra protection against any residual gas risk that may remain. Therefore the CS1 classification, for which no additional gas protection measures are required, is considered appropriate.

7.3 Carbon Monoxide and Volatile Organic Compounds.

- 7.3.1 BS 8576:2013 has been used to derived threshold levels for carbon monoxide and volatile organic compounds.
- 7.3.2 Using the 8576:2013 and the HSE document EH40 "work place exposure limits" it is noted that the main sources of this gas are burning with a restricted oxygen supply.
- 7.3.3 The 8 hour long term exposure level is given at 20ppm and the short term (15min) 100ppm.
- 7.3.4 It should be noted that the well BH3 recorded concentrations of carbon monoxide that ranged from 481ppm on the first visit to 20ppm on the third visit. This well could not be accessed on the fourth visit.
- 7.3.5 Given the recorded levels and the protection measures that will be installed as part of the construction of the basement it is not considered that additional protection measures need to be incorporated to protect end users from the recorded carbon monoxide concentrations. However, the Made Ground is likely to be removed as part of the basement construction and additional monitoring for CO during/post -construction may mitigate the need for additional protection measures.

26

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 7 SOIL GAS RISK ASSESSMENT

7.3.6 PID screening of the monitoring well headspace has revealed maximum concentrations of VOCs of 3.8ppm. No source of VOCs was identified by the Desk Study, and no VOCs were detected in soil samples analysed in the laboratory. Therefore, it is considered that the PID screening of monitoring well confirms the assessment that risks to human health receptors via vapour inhalation pathways are low.

27

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

8 SUMMARY OF RESULTS

8.1 Land Quality Impact Summary

- 8.1.1 Following the ground investigation, the following is noted:
 - The proposed development comprises the following:

'Redevelopment of the site, following the demolition of all existing buildings and structures, to provide a replacement stadium with ancillary facilities, including flexible retail, hospitality and community spaces, independent retail floorspace (Classes A1/A2/A3), a medical centre (Class D1) and vehicle parking, plus residential accommodation comprising of 1,048 dwellings (Class C3) within 5 buildings of varying heights of between 3 and 10 storeys (and under croft and part basement levels) on the south and west sides of the site, together with provision of new accesses from Westfield Avenue to car parking, associated landscaping and the provision of a detached residential concierge building.'

- Following generic risk assessments and statistical analysis, elevated concentrations of lead, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene and dibenzo(ah)anthracene were detected in soils in excess of generic assessment criteria for the protection of human health within a residential without plant uptake end-use scenario.
- Asbestos in the form of amosite, chrysotile and crocidolite (both loose fibres and hard/cement type material) was detected in 2No. samples analysed in the laboratory.
- Any visual asbestos materials may be removed by hand, with extensive dust control
 measures required during the soil screening operations for the protection of site
 workers and nearby residents. It should be noted that asbestos fibres will not be
 visible to the naked eye.
- Where hardstanding or building cover is provided, no formal remedial measures are
 considered necessary in terms of human health, as the hard surfacing is considered
 to effectively encapsulate the made ground.. The remaining communal soft
 landscaping areas should have the Made Ground replaced with approximately
 600mm of imported clean soil, placed on a membrane.
- Further investigation, soil sampling and assessment, including those areas which have not been accessed for ground investigation purposes, may allow areas requiring encapsulation under clean cover to be zoned and refined.
- Figure 6 in Appendix 1 shows the areas of site that require investigation and which
 parts of site can be classed as 'residential without plant uptake' and 'commercial'.
- A pollutant linkage to human health via vapour inhalation are not considered to exist.
- A pollutant linkage to controlled waters is not considered to exist.
- Calculating the Gas Screening Value using results considered to be representative of the site indicate the site should be classified as Characteristic Situation 1. Therefore, no formal gas protection measures are considered necessary. Buildings to have

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 8 SUMMARY OF RESULTS

basement car parks built in accordance with Building Regulations (2000), Approved Document F are considered to be sufficiently protected anyway.

- Material selection for potable water supply pipes should be confirmed with the relevant service provider.
- A remedial strategy will be required for the proposed development.
- As with any ground investigation, the presence of further hotspots between sampling
 points cannot be ruled out. Should any contamination be encountered, a suitably
 qualified environmental consultant should be informed immediately, so that
 adequate measures may be recommended.
- 8.1.2 The above conclusions are made subject to approval by the statutory regulatory bodies.

8.2 Review of Pollutant Linkages Following Site Investigation

8.2.1 The site CSM has been revised and updated from that suggested in the desk study in view of the ground investigation data, including soil laboratory analysis results. Table 8.1 highlights whether pollutant linkages identified in the original CSM are still relevant following the risk assessment, or whether pollutant linkages, not previously identified, exist.

Table 8.1: Plausible Pollutants Linkages Summary (Pre-Remediation)

Potential Source (from desk study)	Pathway	Receptor	Relevant Pollutant Linkage?	Comment
 Potential for Made Ground associated with previous development operations – on site (S1) Potential asbestos containing materials within existing buildings – on site (S2) Potential ground gas generation from nearby landfill site (S3) 	 Ingestion and dermal contact with contaminated soil (P1) Inhalation or contact with potentially contaminated dust and vapours (P2) Permeation of water pipes and attack on concrete foundations by aggressive soil conditions (P6) 	 Construction workers (R1) Maintenance workers (R2) Neighbouring site users (R3) Future site users (R4) Building foundations and on site buried services (water mains, electricity and sewer) (R5) 	✓	see 8.1 above for remedial measures. The findings of this report should be included in the construction health and safety file, with adequate measures put in place for the protection of construction and maintenance workers.
	 Accumulation and migration of soil gases (P5) 		✓	Gas Protection measures required
	 Leaching through permeable soils, migration within the vadose zone (i.e., 	Neighbouring site users (R3)Building foundations and on	✓	Contact should be made with relevant utility providers to confirm if upgraded materials are required.
	unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. (P3) Horizontal and vertical migration of contaminants within groundwater (P4)	 site buried services (water mains, electricity and sewer) (R5) Controlled waters - secondary (A) aquifer (R6) Surface water - pond located east of site, Hoe Stream 39m north (R7) 		A pollutant linkage to controlled waters is not considered to exist.

SECTION 9 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

9 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

9.1 Ground Investigation Summary

- 9.1.1 No detailed structural engineering design information, with respect to the type of construction and associated structural loadings, was provided at the time of preparing this report. Consequently, a detailed discussion of all the problems that may arise during the proposed redevelopment scheme is beyond the scope of this report.
- 9.1.2 Practical solutions to the difficulties encountered, both prior to, and during construction, are frequently decided by structural constraints or economic factors. For these reasons, this discussion is predominantly confined to remarks of a general nature, which are based on site conditions encountered during the intrusive investigations.
- 9.1.3 The proposed development comprises the following:

'Redevelopment of the site, following the demolition of all existing buildings and structures, to provide a replacement stadium with ancillary facilities, including flexible retail, hospitality and community spaces, independent retail floorspace (Classes A1/A2/A3), a medical centre (Class D1) and vehicle parking, plus residential accommodation comprising of 1,048 dwellings (Class C3) within 5 buildings of varying heights of between 3 and 10 storeys (and under croft and part basement levels) on the south and west sides of the site, together with provision of new accesses from Westfield Avenue to car parking, associated landscaping and the provision of a detached residential concierge building.'

9.2 Geotechnical Classification

- 9.2.1 At the Desk Study stage this development was deemed to be a GC2 development in accordance with BS: 1997.
- 9.2.2 The findings of the investigation undertaken and discussed previously do not change this assessment.

9.3 Data Summary

- 9.3.1 The results of the ground investigation revealed a ground profile comprising a variable thickness of Made Ground (up to 1.4m bgl depth), overlying Kempton Park Gravel Member up to 4.15mbgl; overlying Bagshot Formation to the base of the deepest borehole at 25.00mbgl.
- 9.3.2 A summary of ground conditions obtained from the ground investigation and the derived geotechnical parameters, is provided in Table 9.1 below.

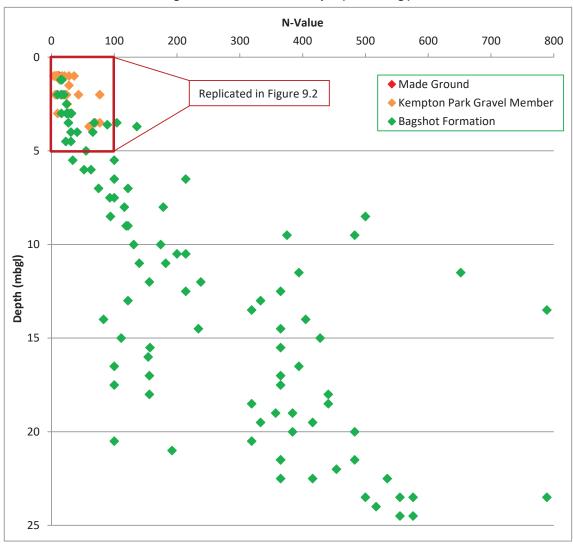
31

Table 9.1: Ground Conditions and Derived Geotechnical Parameters

	Depth Encountered	SPT 'N'	Particle Size Distribution (%)				
Strata	(from-to) (mbgl)	Value	Fines (<0.063mm)	Sand	Gravel		
	0.00						
MADE GROUND	to	10 - 12	-	-	-		
	0.30 - 1.40						
Loose to very dense orange to grey silty clayey very gravelly SAND. Sand is fine.	0.30 - 1.40			22.4 - 67.4			
Gravel consists of flint.	to	4 - 77*	5.7 - 11.2		26.9 - 70.8		
(KEMPTON PARK GRAVEL)	2.00 – 4.15						
Medium to very dense grey silty SAND. Sand	2.00 – 3.60						
is medium to coarse.	to	15 - 789*	2.4 - 39.1	58.6 - 97.3	0.0 - 18.2		
(BAGSHOT FORMATION)	3.75 – 25.00						

9.4 Standard Penetration Tests

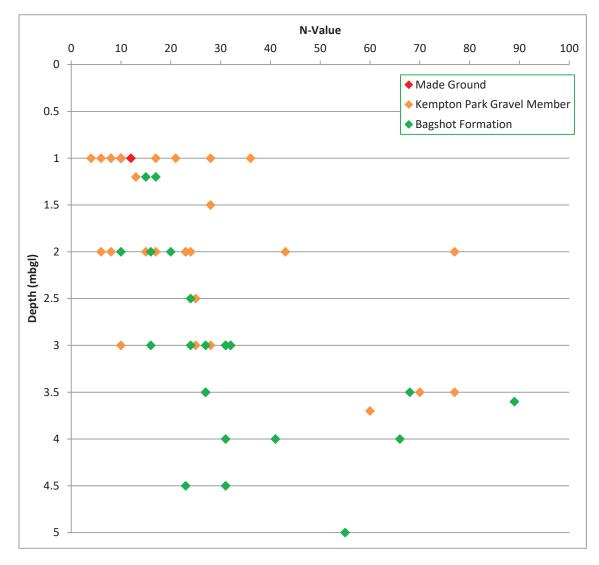
9.4.1 Standard Penetration Tests were undertaken at regular intervals throughout the window sampler holes and cable percussive boreholes. The results of the SPTs are plotted against depth in the figures below.


- 9.4.2 The strata have been grouped into "Made Ground", "Kempton Park Gravel Member" and "Bagshot Formation".
- 9.4.3 N_{equi} results have been calculated for both strata where the SPT crossed strata boundaries or where the full 300mm of penetration could not be achieved for 50 or fewer blows.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club SECTION 9
GEOTECHNICAL ENGINEERING
RECOMMENDATIONS

Figure 9.1: SPT 'N' Value v Depth (0m-25m bgl)


9.4.4 As shown above the SPT N values generally increase with depth. Many of the values shown are calculated N_{equi} and as such the graph has been restricted to an N value of 800, even though some results exceeded this value. The range in values is likely due to varying gravel content within the strata, as well as many deeper values being N_{equi}'s. For clarity of shallow geotechnical conditions, Figure 9.2 below show the upper 5m of geotechnical data.

33

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Figure 9.2: SPT 'N' Value v Depth (0m-5m bgl)

9.4.5 As with the previous graph above, the SPT N values show in Figure 9.2 generally increase with depth. The range in values is likely due to varying gravel content throughout the strata.

9.5 Building Near Trees

- 9.5.1 The underlying soil conditions have been shown to be of a granular nature and as such will not exhibit any significant volume change potential.
- 9.5.2 As Made Ground has been encountered to a maximum depth of 1.4m then a minimum founding depth of 1.5mbgl is recommended. Where basements are proposed, this minimum founding depth will be exceeded.

34

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 9 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

9.6 **Foundations General Comments** 9.6.1 Foundations should not be formed in either the Made Ground or Topsoil due to the unacceptable risk of total and differential settlement. 9.6.2 It should be noted that the demolition and removal of existing structures, foundations and services may increase the depth of Made Ground on the site. 9.6.3 It is recommended that excavations to form the foundations should be undertaken using a toothless bucket to reduce the potential for disturbance of the underlying granular strata. 9.6.4 Foundations should not be formed in the granular materials until the granular materials have been proof compacted. Given the depth and likely size of these foundations it is considered that this could be undertaken using a hydraulic "elephants foot" or if the whole founding layer is compacted at the same time a vibrating roller or "whacker plate" if the machinery can be easily taken into the excavation and the stability of the excavation / safety of any workers entering the excavation can be assured. 9.6.5 The comments below are indicative only based on limited ground investigation data. Foundations should be designed by a suitably qualified Engineer. Once structural loads have been fully determined a full design check in accordance with BS EN 1997 should be undertaken to confirm suitability of foundation choice. Stadium and Ancillary Buildings 9.6.6 Based on the findings of this investigation, it is considered that traditional square pads of 2m by 2m formed at a depth in the order of 2mbgl within the underlying sand and gravel could be designed with an allowable bearing capacity of 100kPa. This may be sufficient for the stadium which is assumed to be of a lightweight steel framework. 9.6.7 Likewise, this founding solution may be appropriate for the smaller buildings associated with the football club. Alternatively, traditional strip footings of 1m breadth formed at a depth in the order of 1.5mbgl within the underlying sand and gravel could be designed with an allowable bearing capacity of 80kPa. 9.6.8 It should be noted that this will need to be reassessed on receipt of drawings / plans of the stadium as features normally traditionally associated with a football stadium such as floodlighting pylons may require a different founding solution due to the potential of overturning moments formed from wind loading etc. 9.6.9 Foundations formed in suitably compacted granular materials do not generally experience any consolidation settlements. **Residential Blocks** 9.6.10 Basements are proposed under each residential block. It is considered likely that an excavation circa 3m deep would be required to form the basement. 9.6.11 In view of the results obtained to date, it is considered that cast in-situ cantilever retaining walls formed at a depth of 3mbgl could be designed with a conservative allowable bearing

35

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

capacity of 150kPa.

SECTION 9 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

- 9.6.12 The exact allowable bearing capacity that could be achieved would need to be reviewed on receipt of initial foundation design. This would include a check against sliding failure would need to be made to the retaining wall design.
- 9.6.13 Given that the residential blocks are to be between 5 and 9 storeys, a greater allowable bearing capacity is likely to be required and a piled foundation solution within the underlying Bagshot Formation should be considered.
- 9.6.14 The piled foundations will carry their working load in a combination of skin friction along the sides of the pile and end bearing at the base of the pile. The piles should be designed by a suitably qualified and experienced piling specialist using a suitable factor of safety with the settlement at working load specified to meet any structural requirements. Table 9.2 provides some indicative capacities for a single pile for the diameter and depths shown.

Table 5.2. Indicative Files capacities (Kit)										
			Pile dian	neter (m)						
Pile toe depth (m bgl)	0.30	0.45	0.60	0.75	0.90	1.20				
		Indicative	Gross Allow	able Pile Capa	acity (kN)					
9	515	930	1455	2085	2820	4615				
10	650	1160	1790	2545	3420	5545				
11	800	1410	2155	3040	4065	6525				
12	965	1680	2550	3575 4145	4750 5485	7570 8670				
13	1145	1975	2975							
14	1340	2295	3430	4750	6260	9835				
15	1555	2630	3915	5395	7085	11060				
16	1780	2995	4430	6080	7950	12345				
17	2020	3380	4975	6800	8865	13690				
18	2275	3785	5550	7560	9820	15095				
19	2545	4215	6155	8355	10825	16560				
20	2830	4670	6790	9190	11875	18085				

Table 9.2: Indicative Piles Capacities (kN)

- 9.6.15 It should be noted that the above indicative gross allowable carrying capacities assume the following
 - They do not take into account the self weight of the pile.
 - In addition the above assumes both skin friction and end bearing.
 - They assume a bored piling system. Other methods of piling and equipment may provide different results.
 - The above are estimates based on single compression load bearing piles. Groups of piles would require the application of a pile efficiency factor. This would be dependent on the number and layout of the piles in each group.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 9 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

9.6.16	For specific parts of the stadium specialist piles may have to be designed to undertake specific roles. These may include tension piles to anchor items such as flood light pylons to prevent overturning caused by wind loading etc.
9.6.17	The use of a piling foundation solution will require the emplacement of an engineered granular piling mat to support the piling rig and prevent overturning. This should be designed and constructed in accordance with BRE 470.
9.6.18	It should be noted that the intrusive investigation proved soils to a depth of 25mbgl. It would be normal practice, in line with BS EN 1997 and guidance from the Federation of Piling Specialists that the ground conditions are proven to at least 5m below the toe of the pile.
9.6.19	As an alternative to cantilever retaining walls, a fully embedded retaining wall comprising a contiguous or secant piled box could be utilised.
9.6.20	The contiguous/secant piles forming the pile box would need to act as retaining walls as well as carry the structural loadings. The piles should be designed to withstand the earth pressures, and still meet the required structural requirements regarding issues such as deflection, deformation and bending.
9.6.21	To provide sufficient support for the excavation, it is recommended that un-propped or fully embedded piles are formed to at least 9m bgl within the Bagshot Formation. This depth may not be sufficient to carry the required loading and so deeper piles may be needed.
9.7	Retaining Walls
9.7.1	At the current time, it is not known how the retaining walls to the basement will be constructed. But it is assumed that the retaining walls will be of the cast in-situ cantilever type. These should be formed in short sections to help stability of the basement excavation.
9.7.2	These walls would need to be designed to both withstand the earth pressures and to be able to transfer the above loading successfully i.e. the retaining wall should be designed to act as a foundation for the structure.
9.7.3	A check against sliding failure would need to be made to the retaining wall design. This may alter the above recommendations regarding allowable bearing capacities.
9.7.4	At the current time, insufficient structural information is available to allow details of the retaining wall to be determined. Given the obtained information it is considered that a friction angle for the materials could be as low as $<30^{\circ}$ in the superficial granular materials (especially if saturated) (After Meyerhof (1956)).
9.7.5	Through the solid Bagshot Formation these sands could have a friction angle of 45° or higher.
9.7.6	Given the granular nature of the underlying ground conditions, it is considered that heave precautions will not be required.
9.8	Ground Floor Slabs
	Stadium and Ancillary Buildings
9.8.1	Where a basement is not proposed, the Made Ground was generally noted to be less that 1m thick (although locally it was noted to exceed this) and generally consisted of a granular

37

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

SECTION 9 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

9.8.2

material. Following lifting and simple sorting and processing these materials could be reengineered to allow a ground bearing floor slab to be used.

If a piled solution is used then a suspended floor slab will be required.

- 9.8.3 The void formed as part of the suspended floor slab could be used as part of the gas protection measures. The protection provided by such a ventilated void would depend on the efficiency of the ventilation. As a minimum the void and ventilation should be capable of having a complete volume chance of air every 24hours, in accordance with CIRIA C665. If it does not meet this requirement the void may be classed as a pressure relief pathway.
- 9.8.4 Similarly under a ground bearing floor slab gas drains could be emplaced within the engineered granular material or within granular filled trenches.
- 9.8.5 The loadings from the suspended floor slab will need to be carried by the foundations, which will need to be designed to not only carry the structural loadings but the additional floor loadings.

Residential Blocks

- 9.8.6 Where there is to be a basement formed, it is expected that the finished floor level would be approximately 3.0m 3.5m below current ground level.
- 9.8.7 If a cantilever retaining wall is utilised then a ground bearing floor slab could be used. In which case formations of the structures should be inspected by a competent person. Any loose or soft material should be removed and replaced with well-graded, properly compacted granular fill or lean mix concrete. The formation should be blinded if left exposed for more than a few hours or if inclement weather is experienced.
- 9.8.8 The floor slab would also need to be suitably reinforced, not only to distribute the structural loading but also to ensure that the floor slab can prop the retaining walls and does not buckle from the lateral pressures imposed by the cantilever retaining walls.
- 9.8.9 The floor slab (and basement walls) would need to be constructed to conform to BS: 8102 (2009).
- 9.8.10 If a contiguous or secant piled option is used to form the building foundations and basement box then a reinforced suspended floor slab would be required. This could then prop the walls, Combined with using the floor slab at ground level as a prop it may allow the piles to be designed to a shallower depth.

9.9 Concrete in the Ground

- 9.9.1 Sulphate attack on building foundations occurs where sulphate solutions react with the various products of hydration in Ordinary Portland Cement (OPC) or converted High-Alumina Cement (HAC). The reaction is expansive, and therefore disruptive, not only due to the formation of minute cracks, but also due to loss of cohesion in the matrix.
- 9.9.2 In accordance with BRE Special Digest 1, where there are more than 10 results available in the datasets the assessment has been undertaken against the average of the highest 20% of values. Where there are less than 10 results in the data set the highest value has been taken.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 9 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

9.9.3 Table 9.3 summarises the analysis of the aggressive nature of the ground for each of the strata encountered within the ground investigation.

Table 9.3: Concrete in the Ground Classes

Stratum	No. Samples	pH range	Ave of top 20% WS Sulphate (mg/l)	Highest WS Sulphate (mg/l)	Design Sulphate Class	ACEC Class	
Made Ground	16	7.7 - 11.7	1403	-	DS-2	AC-2	
Natural	8	7.2 - 9.0	-	89	DS-1	AC-1	

9.10 **Excavations** 9.10.1 It is likely that some shallow excavations will be required at the site for services etc, in addition to larger excavations during the remediation and construction works. These are anticipated to remain stable for the short term only. 9.10.2 The stability of all excavations should be assessed during construction. The sides of any excavations into which personnel are required to enter, should be assessed and where necessary fully supported or battered back to a safe angle. 9.10.3 The use of battering should take int account the effect of ground water and surface water / rainfall in reducing the likely safe angle that could be achieved. 9.10.4 Any vertically sided excavations require support to provide safe man access and to support the sides of the excavation. Supports should be installed as excavation proceeds. For service excavations, overlapping trench sheets could be used as close support in the Made Ground deposits to minimise ground loss. Alternatively, consideration could be given to the use of trench boxes provided excavations take place within the boxes. 9.10.5 Attention is also drawn to the provisions of the Health and Safety at Work Regulations, which state that the sides of any excavations greater than 1.2m depth, into which personnel are required to enter, should be fully supported or battered back to a safe angle. 9.10.6 If a contiguous or secant piled solution is utilised, then it is recommended that the piles are installed first to provide stability to the excavation. Such a design is may require propping prior to and during excavation. 9.10.7 Given the noted ground gas conditions, protective precautions and monitoring of the gas levels within excavations of 1.2m or deeper should be carried out prior to persons entering the excavations. 9.11 **Groundwater Control** 9.11.1 During the investigation groundwater was reported within Window Sample boreholes WS1, WS2, WS6, WS7, WS8, WS9 and WS10 at depths of between 1.1m and 3.0m bgl depth. Groundwater was also reported as being struck at 2.9m and 3.4m bgl within cable percussive boreholes BH3 and BH4 respectively. Groundwater was not reported within the remaining boreholes.

39

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

SECTION 9 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

9.12.4

9.11.2	During return monitoring groundwater was reported at depths of between 1.21m and 2.59m bgl.
9.11.3	Subject to seasonal variations, any groundwater encountered during site works could be readily dealt with by conventional pumping from a sump used to collate waters.
9.11.4	Given the size of the excavations it is considered that dewatering . groundwater lowering may be required. if such a scheme is proposed then it would be advised that a groundwater treatment facility is installed on site to allow for the treatment of the water to remove suspended solids. This may then mean that an application for a temporary discharge consent to a nearby sewer r water course could be considered.
9.11.5	Surface water or rainfall ingress could be similarly dealt with.
9.11.6	Groundwater exclusion in the form of sheet piling or secant piled walls could also be an option.
9.12	In Situ CBR Measurements
9.12.1	California Bearing Ratio tests were undertaken using a Dynamic Cone Penetrometer at 4No. positions across the site as shown on a plan in Appendix 1.
9.12.2	The results have then been used to calculate CBR values using the methodology outlined in Interim Advice Notice 73/06.
9.12.3	The recorded penetration and the calculated CBR values from each position are provided in Appendix 6.

Table 9.3 – CBR Results

The results are summarised in the table below:

Position	Initial-Final Depth (mm bgl)	CBR (%)
	150 - 400	33.2
CBR1	400 - 500	12.7
	500 - 1000	7.9
	150 - 200	12.5
CDDE	200 - 350	3.3
CBR5	350 - 800	12.5
	800 - 1000	25.0
CDDC	200 - 300	142.1
CBR6	300 - 1000	11.2
	250 - 350	32.1
CBR8	350 - 650	79.6
	650 - 1000	30.5

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

SECTION 9 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

- 9.12.5 It is recommended that a value of 3.3% is adopted for the purpose of road design. However, proof rolling / compaction of any granular materials may provide a greater result.
- 9.12.6 Following compaction, further CBR testing should be undertaken to confirm that suitable improvement was achieved.

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

SECTION 10 REFERENCES

10 REFERENCES

BRE Report BR211: Radon: Protective measures for new dwellings, 2007

BRE Special Digest 1: Concrete in Aggressive Ground, 2005

British Standards Institution (2007) BS 3882:2007 Specification for topsoil and requirements for use. Milton Keynes: BSI

British Standards Institution (2011) BS 10175:2011 Code of practice for the investigation of potentially contaminated sites. Milton Keynes: BSI

British Standards Institution (2015) BS 5930:2015 *Code of practice for site investigations*. Milton Keynes: BSI

CIEH & CL:AIRE (2008) *Guidance on comparing soil contamination data with a critical concentration*. London: Chartered Institute of Environmental Health (CIEH) and CL:AIRE

Environment Agency (2004) *Model procedures for the management of land contamination*. CLR11. Bristol: Environment Agency

Environment Agency, NHBC & CIEH (2008) *Guidance for the safe development of housing on land affected by contamination*. R & D Publication 66. London: Environment Agency

Environment Agency (2006) Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination Environment Agency

LQM/CIEH S4ULs. LQM, 2014

National Planning Policy Framework. Department for Communities and Local Government, March 2012

CIRIA C665 (2007) Assessing risks posed by hazardous ground gases to buildings London, CIRIA

42

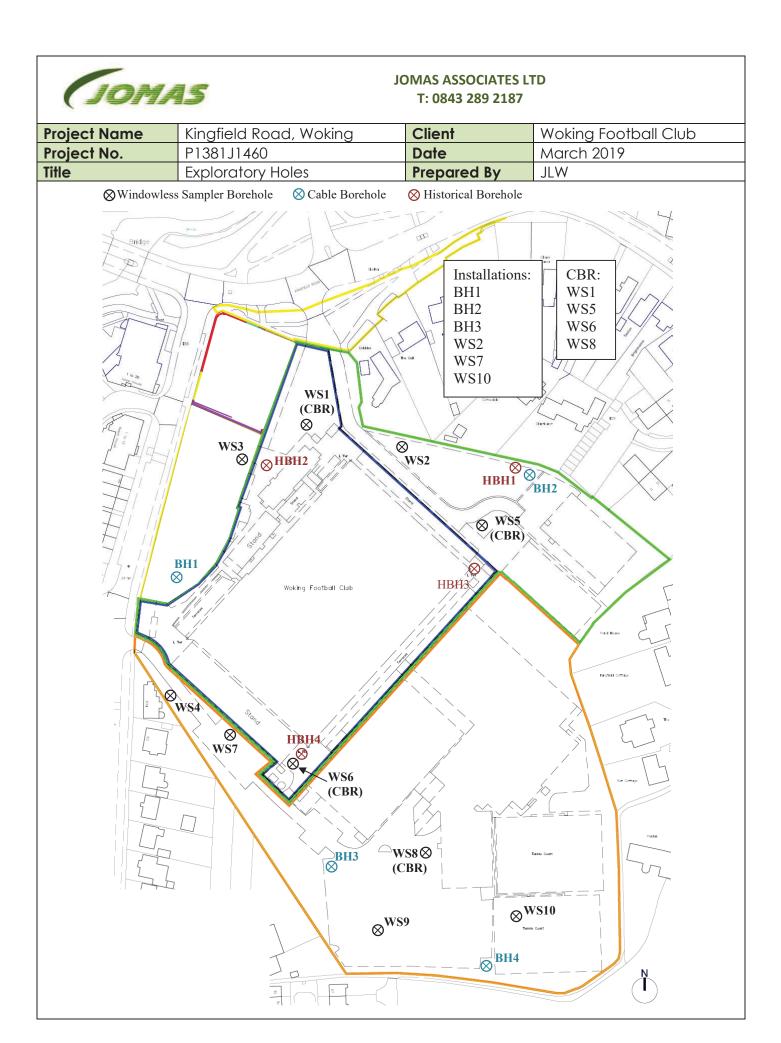
British Standards Institution (2015) BS 8485:2015 Incorporating corrigendum No.1 *Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings* Milton Keynes: BSI

British Standards Institution (2013) BS 8576:2013 *Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOC's),* Milton Keynes: BSI

APPENDICES

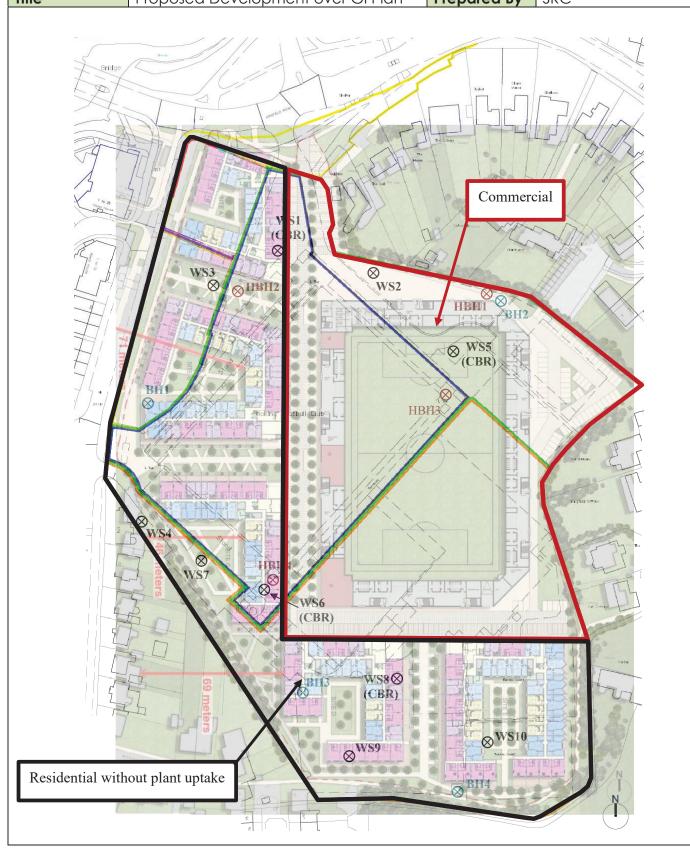
APPENDIX 1 – FIGURES


Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

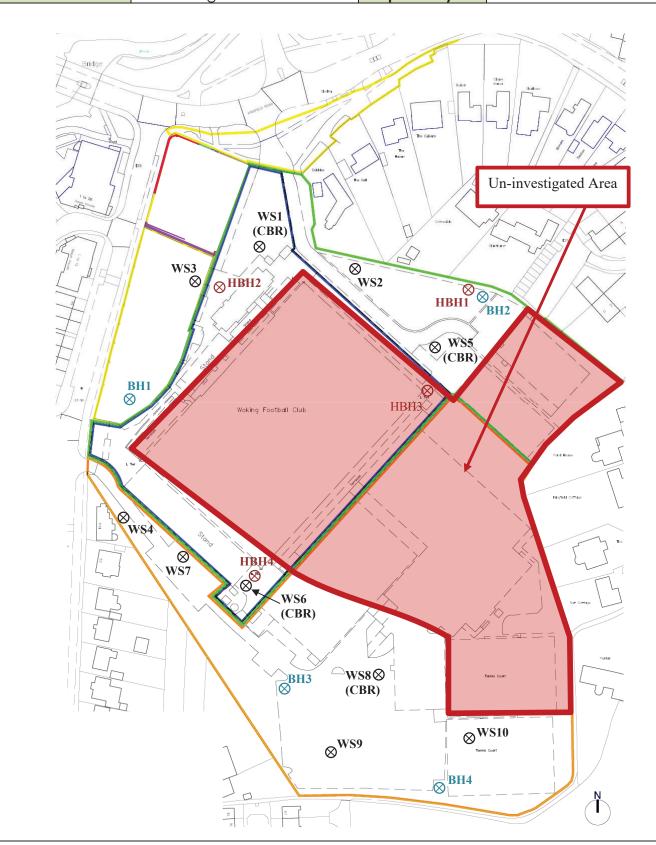

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

JOMAS ASSOCIATES LTD T: 0843 289 2187

Project Name	Kingfield Road, Woking	Client	Woking Football Club
Project No.	P1381J1460	Date	16/08/2018
Title	Site Location Plan	Prepared By	AM



JOMAS ASSOCIATES LTD T: 0843 289 2187


Project Name	Kingfield Road, Woking	Client	Woking Football Club
Project No.	P1381J1460	Date	April 2019
Title	Proposed Development over GI Plan	Prepared Ry	SRC

JOMAS ASSOCIATES LTD T: 0843 289 2187

Project Name	Kingfield Road, Woking	Client	Woking Football Club
Project No.	P1381J1460	Date	April 2019
Title	Un-investigated Area	Prepared By	SRC

APPENDIX 2 – EXPLORATORY HOLE RECORDS

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 – November 2019

				CABLE PERCUSSION BOREHOLE RECORD					
		Exploratory Hole No:			вн1				
Site Address:	Woking Football Club, Ki	ngfield Road, Woking, Su	rrey, GU22 9AA	Project No:		P1381J1460			
Client:	Goldev Woking Ltd			Ground Level:					
Logged By:	RD			Date Commenced:		20/02/2019			
Checked By:	PSw			Date Completed:		20/02/2019			
Type and diameter of equipment:	Dando 2000 Cable Percu	ssive Rig		Sheet No:		1 Of 6			
Water levels recorded during box	ring, m								
Date:									
Hole depth:									
Casing depth:									
Level water on strike:									
Water Level after 20mins:						-			

1: No water reported.

4:		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)	Result 75 75 75 75 75 N						N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
									0.00 -	**********	0.10		Asphalt. (MADE GROUND).	
ES	0.20								0.50 -		0.10		Gravel. Gravel consists of brick and concrete. (MADE GROUND).	
ES	0.80								1.00 -	-				
									1.00		1.20		Medium dense black clayey GRAVEL. Gravel consis of flint. (KEMPTON PARK GRAVEL).	ts
SPT-C B	1.50	3	4	7	7	7	7	28	1.50 -				of flint. (KEMPTON PARK GRAVEL).	
									2.00 -					
SPT-C B	2.50	4	5	6	6	6	7	25	2.50 -					
									3.00 -					
SPT-C	3.50	4	5	6	7	7	7	27	3.50 -		3.50		Medium dense becoming very dense grey slightly silty SAND. (BAGSHOT FORMATION).	
SPT-C B	4.50	4	6	7	7	8	9	31	4.50 -					

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomas

				CABLE P	ERCUSSIO	N BOREHOLE	RECORD	
		Exploratory Hole No:			BH1			
Site Address:	Woking Football Club, Kii	ngfield Road, Woking, Sur	rey, GU22 9AA	Project No:			P1381J1460	
Client:	Goldev Woking Ltd			Ground Level:				
Logged By:	RD			Date Commenced:		20/02/2019		
Checked By:	PSw			Date Completed:			20/02/2019	
Type and diameter of equipment:	Dando 2000 Cable Percu	ssive Rig		Sheet No:			2 Of 6	
Water levels recorded during bor	ing, m							
Date:								
Hole depth:								
Casing depth:								
Level water on strike:								
Water Level after 20mins:								

Remarks
1: No water reported.
2:

L	_	•	
Γ	4		

4: Sample or Tests						Strata								
Туре	Depth				Result	ŧ				Legend	Depth	Water Strikes	Strata Description	Installatio
Турс	(mbgl)	75	75	75	75	75	75	N		Legena	(mbgl)	(mbgl)		
									5.00 —				Medium dense becoming very dense grey slightly silty SAND. (BAGSHOT FORMATION).	
									-				SIITY SAND. (BAGSHOT FORMATION).	
									-					
SPT-C	5.50	4	5	8	8	9	9	34	5.50 —					
									-					
									-					
									-					
									6.00 -					
									-	-				
									-					
SPT-C	6.50	9	12	18	32			50	6.50 -					
В									-					
									-					
									7.00 -					
									7.00 -					
									-	-				
									-					
SPT-C	7.50	9	10	19	31			50	7.50 —					
									-					
									-					
									8.00 -					
									-	-				
									-					
CDT C	8.50	10	15	40	10			50	8.50 —	-				
SPT-C	10 blows in		15 10mm					50	8.50 -					
В									-	-				
									-					
									9.00 —					
									-					
									-					
SPT-C	9.50	25		50				50	9.50 —					
	50 blows in		40mm	penet	ration.				-					
									-					
									-					
									10.00-	1				

				CABLE I	PERCUSSIO	N BOREHOLE	E RECORD
	Exploratory Hole No:			вн1			
Site Address:	Woking Football Club, Ki	ingfield Road, Woking, Su	rrey, GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	RD			Date Commenced:			20/02/2019
Checked By:	PSw			Date Completed:			20/02/2019
Type and diameter of equipment:	Dando 2000 Cable Percu	ussive Rig		Sheet No:			3 Of 6
Water levels recorded during bo	ring, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:							
Water Level after 20mins:							

1: No water reported.
2:
3:

·:		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)				Resul	t				Legend	Depth (mbgl)	Water Strikes	Strata Description	Installatio
	(75	75	75	75	75	75	N			(25.)	(mbgl)		
									10.00-				Medium dense becoming very dense grey slightly silty SAND. (BAGSHOT FORMATION).	
SPT-C B	10.50	9	14	50				50	10.50					
									11.00-					
SPT-C	11.50	10	18	50				50	11.50-					*******
	50 blows in	R3 for	25mm	penet	ration.				-					*******
									12.00					
SPT-C	12.50 50 blows in	25	41 mm	50	ration			50	- - 12.50—					
В	30 blows III	(3 101	4111111	penec	acion.				-					*******
									13.00— - - - -					
	10.50								-					
SPT-C	13.50 50 blows in	25 R3 for	47mm	50	ration			50	13.50—					
				period					- - - 14.00—					
									-					
SPT-C	14.50	25		50				50	14.50—					
В	50 blows in		41mm		ration.				-					
									15.00—					

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomas

			CABLE F	PERCUSSIO	N BOREHOLE RE	CORD	
		Exploratory Hole No:			BH1		
Site Address:	Woking Football Club, Ki	ingfield Road, Woking, Sur	rey, GU22 9AA	Project No:		P13	81J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	RD			Date Commenced:		20/	02/2019
Checked By:	PSw			Date Completed:		20/02/2019	
Type and diameter of equipment:	Dando 2000 Cable Percu	ıssive Rig		Sheet No: 4 Of 6			1 Of 6
Water levels recorded during bor	ing, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:							
Water Level after 20mins:							
Remarks							
1: No water reported.	•	•					•
2:							
3:	•						•

L	_	•	
Γ	4		

:		Sampl	e or T	ests					Strata					
Туре	Depth (mbgl)				Resul	t				Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installatio
	() 5 /	75	75	75	75	75	75	N	45.00		(,5)	(mbgi)		
SPT-C	15.50 20 blows in	9 R4 for	15 <mark>20mm</mark>	30 penet	20			50	15.00-				Medium dense becoming very dense grey slightly silty SAND. (BAGSHOT FORMATION).	
									16.00-					
SPT-C B	16.50	9	10	15	35			50	16.50-					
SPT-C	17.50	10	12	16	34			50	17.50-					
B SPT-C	18.50 50 blows in	25 R3 for	47mm	50 penet	ration.			50	18.50-					
									19.00-					
SPT-C	19.50 50 blows in	25 R3 for	36mm	50 penet	r <mark>ation.</mark>			50	19.50-	 - -				
									20.00-	7				

				CABLE PERCUSSION BOREHOLE RECORD					
	Exploratory Hole No:			ВН1					
Site Address:	Woking Football Club, K	ingfield Road, Woking, Su	rrey, GU22 9AA	Project No:			P1381J1460		
Client:	Goldev Woking Ltd			Ground Level:					
Logged By:	RD			Date Commenced:			20/02/2019		
Checked By:	PSw			Date Completed:		20/02/2019			
Type and diameter of equipment:	Dando 2000 Cable Percu	ussive Rig		Sheet No:			5 Of 6		
Water levels recorded during bo	ring, m								
Date:									
Hole depth:									
Casing depth:									
Level water on strike:						•			
Water Level after 20mins:									

1: No water reported.

4:		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)			T	Resul					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
		75	75	75	75	75	75	N	20.00-			('5',		
									-				Medium dense becoming very dense grey slightly silty SAND. (BAGSHOT FORMATION).	
B SPT-C	20.50	25		50				50	20.50					
	50 blows in	R3 for	47mm	penet	ration.				-	-				********
									21.00					
									-					
SPT-C	21.50 50 blows in	25 R3 for	31mm	50 penet	ration.			50	21.50-					
									-					
									22.00-					
SPT-C	22.50	25		50				50	22.50					
	50 blows in	R3 for	28mm	penet	ration.				-					********
В									23.00-					
SPT-C	23.50	25		50				50	23.50—					
	50 blows in		19mm		ration.				-	-				********
									24.00-					
SPT-C	24.50	50							- - - 24.50—					
3r1-C	50 blows in		no pe	netratio	on.				24.30					
									- -					
									25.00—					XXXXXXXX
	1	1	1	1	1	1	1	1	1	1		I	1	- 1

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomas

				CABLE P	PERCUSSIO	N BOREHOLE	RECORD	
			Exploratory Hole No:			BH1		
Site Address:	Woking Football Club, Kir	ngfield Road, Woking, Sur	rrey, GU22 9AA	Project No:			P1381J1460	
Client:	Goldev Woking Ltd			Ground Level:				
ogged By:	RD			Date Commenced:		20/02/2019		
Checked By:	PSw			Date Completed:			20/02/2019	
ype and diameter of equipment:	Dando 2000 Cable Percu	ssive Rig		Sheet No:		6 Of 6		
Vater levels recorded during bor	ing, m							
Date:								
Hole depth:								
Casing depth:								
evel water on strike:		·		•				
Vater Level after 20mins:								

Remarks

1: No water reported.

Depth (mbgl) Translet Trans
25.00 Medium dense becoming very dense grey slightly silty SAND. (BAGSHOT FORMATION).
27.50— 28.00— 28.50— 29.00— 29.00— 29.50— 29.50—

				CABLE I	PERCUSSIO	N BOREHOLE	RECORD
		145		Exploratory Hole No:			вн2
Site Address:	Woking Football Club, K	ingfield Road, Woking, Su	rrey, GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	RD			Date Commenced:			19/02/2019
Checked By:	PSw			Date Completed:			19/02/2019
Type and diameter of equipment:	Dando 2000 Cable Percu	ussive Rig		Sheet No:			1 Of 5
Water levels recorded during bo	ring, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:						•	
Water Level after 20mins:							

*Field description.
 No water reported.

3: 4:														
		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)	75	T ==	T ==	Result		T ==			Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installatio
		75	75	75	75	75	75	N	0.00 -	***********			Compact* gravel. (MADE GROUND).	
											0.20			
В	0.30								0.50 -				Medium dense yellow brown SAND. Sand is fine to medium. (BAGSHOT FORMATION).	
									1.00 -					
SPT-C B	1.20	2	3	4	4	5	4	17	1.50 -					
									2.00 -					
B SPT-C	2.50	3	4	6	6	6	6	24	2.50 -	0 0	2.40		Medium dense becoming very dense dark grey clayey gravelly SAND. Gravel consists of flint. (BAGSHOT FORMATION).	
									3.00 -	.d				
B SPT-C	3.50	7	7	6	7	7	7	27	3.50 -	d				
									4.00 -					
SPT-C B	4.50	4	4	5	6	6	6	23	4.50 -					
									5.00 -					

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomas

				CABLE PERCUSSION BOREHOLE RECORD					
				Exploratory Hole No:			BH2		
Site Address:	Woking Football Club, Ki	ngfield Road, Woking, Sui	rrey, GU22 9AA	Project No:			P1381J1460		
Client:	Goldev Woking Ltd			Ground Level:					
Logged By:	RD			Date Commenced:			19/02/2019		
Checked By:	PSw			Date Completed:			19/02/2019		
Type and diameter of equipment:	Dando 2000 Cable Percu	ssive Rig		Sheet No:			2 Of 5		
Water levels recorded during bor	ing, m								
Date:									
Hole depth:									
Casing depth:									
Level water on strike:									
Water Level after 20mins:						-			

Remarks
1: *Field description.
2: No water reported.

4:		Sampl	e or T	octc							Strata			
		запірі	e or r	esis								Water		
Туре	Depth (mbgl)	75	75	75	Result 75	75	75	N		Legend	Depth (mbgl)	Strikes (mbgl)	Strata Description	Installation
SPT-C B	5.50	9	12	15	35			50	5.00 -	a			Medium dense becoming very dense dark grey clayey gravelly SAND. Gravel consists of flint. (BAGSHOT FORMATION).	
B SPT-C	6.50 50 blows in	9 R3 for	15 70mm	50 penet	ration.			50	6.50 —	x x x	6.30		Very dense dark grey silty SAND. Sand is fine. (BAGSHOT FORMATION).	
SPT-C	7.50 10 blows in	9 R4 for	14	40	10			50	7.00 —	X X X X X X X X X X X X X X X X X X X				
B SPT-C	8.50	9	144	50				50	8.00 — 	X X X X X X X X X X X X X X X X X X X				
_	50 blows in	R3 for	30mm	penet	ration.				-	- X X .				
В	9.50	25		50				50	9.00 —	× · · · × · · · · · · · · · · · · · · ·				
В	9.50 50 blows in	25 R3 for	31mm	50	ration			50	9.50 -	- x x . - x x .				
SPT-C	JO DIOWS III	.5 101	J	penet	acion.				10.00-	X				

				CABLE I	PERCUSSIO	N BOREHOLI	E RECORD
		145		Exploratory Hole No:			BH2
Site Address:	Woking Football Club, K	ingfield Road, Woking, Su	rrey, GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	RD			Date Commenced:			19/02/2019
Checked By:	PSw			Date Completed:			19/02/2019
Type and diameter of equipment:	Dando 2000 Cable Percu	ussive Rig		Sheet No:			3 Of 5
Water levels recorded during bo	ring, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:						•	
Water Level after 20mins:							

1: *Field description.

2: No water reported.

3:														
4:													T	
	1	Sampl	le or T	ests					-		Strata	Water	_	
Туре	Depth (mbgl)	75	75	75	Resul	75	75	N	_	Legend	Depth (mbgl)	Strikes (mbgl)	Strata Description	Installation
		/3	/3	/3	/3	/3	/3	IN	10.00-				Very dense dark grey silty SAND. Sand is fine.	*******
									-	× ×			(BAGSHOT FORMATION).	********
									-	_xx				********
]^:: _\ ::^::				- XXXXXX
В	10.50								10.50-	X				
SPT-C		25		50				50		X X				
D.	50 blows in	R3 for	70mm	penet	ration.				-					
В] ^ ^				
									11.00-	X X				
									-	∤^∷∵ ∵				********
									-	- X X				
] x				
SPT-C	11.50	25		50				50	11.50-	X X .				
	50 blows in	R3 for	38mm	penet	ration.				-					
														- XXXXXX
									_	X :				
									12.00-	× · · · × ·				
									-	×::				
										× · · · × ·				
									-	×				
SPT-C	12.50	9	16	50				50	12.50-	× × .				
	50 blows in	R3 for	70mm	penet	ration.				-	×:.;.:				
										××.				
									-					
									13.00-	××.				
										x : x : x :				
										××.				
									-	X . X . X .				
SPT-C	13.50 50 blows in	25	10mm	50	ration			50	13.50-	××.				
	30 blows III	K3 101	1911111	penec	lation.					X X X .				
									-	X X				
										X				
									14.00-	××.				
									-	X				
									-	× ×				
SPT-C	14.50	25		50				50	14.50-	X				********
3/10	50 blows in		64mm		ration.			30	11.50	xx.				
									-	X X X .				
									-	- X X				
В	15.00								15.00-	X , X X				
	-5.00													

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomas

				CABLE P	ERCUSSIO	N BOREHOLE	RECORD
		1.5		Exploratory Hole No:			BH2
Site Address:	Woking Football Club, Ki	ngfield Road, Woking, Su	rrey, GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	RD			Date Commenced:			19/02/2019
Checked By:	PSw			Date Completed:			19/02/2019
Type and diameter of equipment:	Dando 2000 Cable Percu	ssive Rig		Sheet No:			4 Of 5
Water levels recorded during bor	ing, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:							
Water Level after 20mins:						-	

Remarks
1: *Field description.
2: No water reported.

:		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)				Result					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
В	15.00	75	75	75	75	75	75	N	15.00-			(Ve deve de la contra CAND Contra Con	
SPT-C	15.50 50 blows in	25 R3 for	41 mm	50 penet	ration.			50	- - - - 15.50—	X X X X X X X X X X X X X X X X X X X			Very dense dark grey silty SAND. Sand is fine. (BAGSHOT FORMATION).	
									16.00	X . X . X . X . X . X . X . X . X . X .				
B SPT-C	16.50 50 blows in	25 R3 for	38mm	50 penet	<mark>r</mark> ation.			50	16.50 - - -	X X X X X X X X X X X X X X X X X X X				
									17.00— - - -	X X X X X X X X X X X X X X X X X X X				
SPT-C	17.50 50 blows in	25 R3 for	41mm	50 penet	ration.			50	17.50— -	X X X X				
									18.00-	X X X X X X X X X X X X X X X X X X X				
SPT-C	18.50	25		50				50	18.50—	X X .				
	50 blows in	R3 for	34mm	penet	ration.				19.00—	X X X X X X X X X X X X X X X X X X X				
SPT-C	19.50 50 blows in	25 R3 for	45mm	50 penet	r <mark>ation.</mark>			50	19.50— - -	X X X X X X X X X X X X X X X X X X X				
									20.00—	X .				

				CABLE I	PERCUSSIO	N BOREHOLE	RECORD
		145		Exploratory Hole No:			вн2
Site Address:	Woking Football Club, K	ingfield Road, Woking, Su	rrey, GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	RD			Date Commenced:			19/02/2019
Checked By:	PSw			Date Completed:			19/02/2019
Type and diameter of equipment:	Dando 2000 Cable Percu	ussive Rig		Sheet No:			5 Of 5
Water levels recorded during bo	ring, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:							
Water Level after 20mins							

1: *Field description.
2: No water reported.

		Sam-	lo or T	octo	_	_		_			Strata			
	<u> </u>	Samp	ie or i	ests					-		Strata	Water	-	
Туре	Depth (mbgl)	75	75	75	Result	t 75	75	N	_	Legend	Depth (mbgl)	Strikes (mbgl)	Strata Description	Installa
		/3	/3	/3	/3	/3	/3	14	20.00	.xx.			Very dense dark grey silty SAND. Sand is fine.	*****
									-	+î::;::î::			(BAGSHOT FORMATION).	
									-	_xx				- XXXX
										· ^ · · · · · · · · ·				- XXXXX
В	20.50								20.50-	x x				
SPT-C		9	10	15	35			50	-	[X X				*****
									-	-X				
									-	- X X				
									21.00	X X X				
									21.00	x x				
									-	X , X X				*****
									-	x x .				
	24.50								-	X X X				
SPT-C	21.50 50 blows in	25 R3 for	41mm	50	ration			50	21.50	××.				
	30 5.0115 111	1.5 .6.		Penee						X X X .				
									-	××.				
									-	X X X .				
									22.00	.xx.				*****
										x : x : x :				
										× × .				
									-	X X X .				- XXXX
В	22.50								22.50-	хх.				*****
SPT-C	50 blows in	25 P3 for	41mm	50	ration			50		,				*****
	JO DIOWS III	101	4111111	penec	acion.					× × .				*****
									-	×				*****
									23.00-	X X .				
									-	×:::				*****
										× · · · × ·				
										×:				*****
SPT-C	23.50	25		50				50	23.50-	× · · · × ·				*****
	50 blows in	R3 for	30mm	penet	ration.				-	+î::ç::î::				
									-	-X				
] ^				- XXXX
									24.00-	X				*****
									-	[X X .]				*****
									-	-x · · ·x · · x · ·				*****
									-	× ×				
В	24.50								24.50-	X , x x				
SPT-C	24.50	25		50				50	2 1.30	××.				*****
	50 blows in		26mm		ration.				-	χ _X _X				*****
									-	X X .				
									-	χχχ.	25.00			
									25.00-					

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomas

				CARLER	EDGUIGGEG	N DODELLOL	DECORD	
				CABLE P	ERCUSSIC	N BOREHOLE	RECORD	
		75		Exploratory Hole No:			внз	
Site Address:	Woking Football Club, Kii	ngfield Road, Woking, Sui	rrey, GU22 9AA	Project No:			P1381J1460	
Client:	Goldev Woking Ltd			Ground Level:				
Logged By:	MD			Date Commenced:		04/03/2019		
Checked By:	PSw			Date Completed:			05/03/2019	
Type and diameter of equipment:	DANDO 2000 Cable Perci	ussive Rig		Sheet No:			1 Of 5	
Water levels recorded during bor	ing, m							
Date:	04/03/2019							
Hole depth:	25.00							
Casing depth:								
Level water on strike:	2.90							
Water Level after 20mins:	2.70							

Remarks

		Sampl	e or T	ests							Strata				
Туре	Depth (mbgl)	75	75	75	Result	75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Install	ation
		/5	/5	/5	/5	/5	/5	IN	0.00 —	×××××			Asphalt. (MADE GROUND)		
ES	0.25								-		0.20		Black clayey sandy gravel. Sand is medium. Gravel consists of fine to coarse, angular to sub-rounded		
ES D	0.50								0.50 —				flint, brick and concrete fragments. (MADE GROUND)		
									-						
ES D	1.00								1.00 —		1.00		Medium dense orange to brown slightly clayey sandy GRAVEL. Sand is fine to medium. Gravel	-=-	
SPT B	1.20	2	2	3	3	3	4	13	-				consists of fine to medium, sub-rounded flint. (KEMPTON PARK GRAVEL)		
									1.50 —	ô · · ô ·					
									-						
D SPT B	2.00	2	3	3	3	4	5	15	2.00 —						
									2.50 —						
									-	× · · · × ·	2.70		Dense yellow to brown silty SAND. Sand is fine to medium. (BAGSHOT FORMATION)		
D	3.00								3.00 —	X X .			medium. (bagshot rokmation)		
SPT B		3	4	7	7	8	9	31	-	X X .					
									3.50 —	X · . X · . X .					
									-	X · . ^ · . X .	3.70		Dense becoming very dense green to grey slightly silty SAND. (BAGSHOT FORMATION)		
SPT B	4.00	5	7	8	9	11	13	41	4.00 —	-X · · ^ · · X · · · · · · · · · · · · ·					
									- - -	× × .					
									4.50 —	X X .					
									-	X . X X . X X . X X . X X . X					
SPT B	5.00	7	12	13	14	14	14	55	5.00 —					1	

				CABLE	PERCUSSIO	N BOREHOLE	RECORD
		145		Exploratory Hole No:			внз
Site Address:	Woking Football Club, Ki	ingfield Road, Woking, Su	ırrey, GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	MD			Date Commenced:			04/03/2019
Checked By:	PSw			Date Completed:			05/03/2019
Type and diameter of equipment:	DANDO 2000 Cable Pero	cussive Rig		Sheet No:			2 Of 5
Water levels recorded during bo	ring, m						
Date:	04/03/2019						
Hole depth:	25.00						
Casing depth:							
Level water on strike:	2.90						
Water Level after 20mins:	2.70						

1:

2:

Sample or Tests	Strata	

4:		Samp	le or T	ests							Strata			
Туре	Depth (mbgl)				Resul	t				Legend	Depth (mbgl)	Water Strikes	Strata Description	Installation
		75	75	75	75	75	75	N			(IIIDGI)	(mbgl)		
SPT	5.00	7	12	13	14	14	14	55	5.00	xx.			Dense becoming very dense green to grey slightly	×××××
В										7	1		silty SAND. (BAGSHOT FORMATION)	********

											•			*********
									5.50]			********
										_ × · · · · × ·]			********
										-xx.	1			********
]			********
CDT (1)	6.00	1.0	4.5	1.		1.0	_				•			********
SPT (c)	6.00 7 blows in F	10 R6 for	15	13	14	16	7	50	6.00	xx.	1			
	7 blows iii i	101 .	1111111							-x · · x · · x				
										_ x x .	1			********
										-X : X : X]			********
									6.50	××.				*********
										- · · · · · · · ·	1			********
]			********
]	1			*********
SPT (c)	7.00	8	15	15	15	20		50	7.00]			********
	20 blows in	R5 for	49mm	1						_ XX.				*********
В										-x · · · · · · · · · · · · · · · · · · ·	1			********
										- X X .]			- XXXXXX
									7.50	X X X .	1			********
									7.50	xx.	1			*********
										-XXX.				********
										- x x .	:			*********
										-X.:.X.:.X.				*********
SPT (c)	8.00	9	13	37	13			50	8.00	××.				
В	13 blows in	R4 for	9mm							_x x x .	1			********
										××.				********
										-[.::×:::.	1			********
									8.50	- X X .				********
										- ^;	•			********
										-Xx.	1			********
]^:: <u>;</u> :-^:				*********
SPT (c)	9.00	7	13	27	23			50	9.00	X, x .	1			********
5(5)	23 blows in										1			********
										-xx.	•			********
										- x · · · · x ·	1			*********
										X				********
									9.50	××.	•			********
]			
										_ x x .	1			
											1			***************************************
SPT (c)	10.00	10	14	39	11			50	10.00					
	11 blows in	R4 for	11mm	n						1	1			

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomas

			CABLE P	ERCUSSIO	N BOREHOLE	RECORD
			Exploratory Hole No:			внз
Woking Football Club, Kir	ngfield Road, Woking, Sur	rrey, GU22 9AA	Project No:			P1381J1460
Goldev Woking Ltd			Ground Level:			
MD			Date Commenced:			04/03/2019
PSw			Date Completed:			05/03/2019
DANDO 2000 Cable Perci	ussive Rig		Sheet No:			3 Of 5
ing, m						
04/03/2019						
25.00						
2.90						
2.70						
	Woking Football Club, Kii Goldev Woking Ltd MD PSW DANDO 2000 Cable Perci ing, m 04/03/2019 25.00	Goldev Woking Ltd MD PSW DANDO 2000 Cable Percussive Rig ing, m 04/03/2019 25.00 2.90	Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA Goldev Woking Ltd MD PSW DANDO 2000 Cable Percussive Rig ing, m 04/03/2019 25.00 2.90	Exploratory Hole No: Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA Project No: Goldev Woking Ltd MD Date Commenced: PSw DANDO 2000 Cable Percussive Rig ing, m 04/03/2019 25.00 2.90 Exploratory Hole No: Brownery, GU22 9AA Project No: Ground Level: Date Completed: Sheet No: ing, m 04/03/2019	Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA Project No: Goldev Woking Ltd Ground Level: MD Date Commenced: PSW Date Completed: Date Comp	Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA Project No:

Remarks

1.

2:

4.

4:		C	T								Chusto			
		Sampl	e or Te	ests							Strata	Water		
Туре	Depth (mbgl)	75	75	75	Result	75	75	N		Legend	Depth (mbgl)	Strikes (mbgl)	Strata Description	Installation
SPT (c)	10.00	10	14	39	11			50	10.00-	.xx.			Dense becoming very dense green to grey slightly	****
	11 blows in	R4 for	11mm							- ^ ^			silty SAND. (BAGSHOT FORMATION)	
В										_x : x				
										- ^· · · · · · · ·				***************************************
									10.50-	Χ,				
									10.50	××.				
										-xx				
										XX				
CDT ()	44.00	22							44.00	X X X .				
SPT (c)	11.00 9 blows in R	23 4 for 7	2 mm	41	9			50	11.00-	××.				
	3 5.0113 1								,	χχχ				
										××.				
										χχχ.				
									11.50-	·××.				
										× · · × · · ×				
										××.				
SPT (c)	12.00	25		50				50	12.00-	××.				
D	50 blows in	R3 for	63mm							×				
В														
										×				
									12.50-	X X .				
									,	- ^ ^				************
										X x				
] ^ : ; · ^ : ·				
SPT (c)	13.00	25		50				50	13.00-	X				
	50 blows in	R3 for	45mm							X X .				
										-Xx				
										- X X				
									13.50-	X, x				
									13.30	. x x				
										-xx				
CDT ()	44.00	25							14.00	X X X .				
SPT (c)	14.00 50 blows in	25 P3 for	37mm	50				50	14.00-	××.				
В	30 Diows III	101	37111111							X X X				
										××.				
										X				
									14.50-	××.				
										.∵.×				
										× · · · × ·				
										X . X . X X X X X . X X . X X X . X . X . X				
SPT (c)	15.00	25		50				50	15.00-					*******
	50 blows in	R3 for	35mm											

				CABLE	PERCUSSIO	N BOREHOLE	RECORD
		145		Exploratory Hole No:			внз
Site Address:	Woking Football Club, Ki	ingfield Road, Woking, Su	ırrey, GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	MD			Date Commenced:			04/03/2019
Checked By:	PSw			Date Completed:			05/03/2019
Type and diameter of equipment:	DANDO 2000 Cable Pero	cussive Rig		Sheet No:			4 Of 5
Water levels recorded during bo	ring, m						
Date:	04/03/2019						
Hole depth:	25.00						
Casing depth:							
Level water on strike:	2.90						
Water Level after 20mins:	2.70						

3:														
4:														
		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)	75	75	75	Resul	t 75	75	N	-	Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
SPT (c)	15.00	25	/ / /	50	/3	/3	/3	50	15.00-					
(3)	50 blows in		35mm						-	××.			Dense becoming very dense green to grey slightly silty SAND. (BAGSHOT FORMATION)	*********
									-	X · . X · . X .				*********
									-	××.				*********
									-	× · · × · · ×				*********
									15.50-	· x · · · x				*********
									-	x				**********
									-	-X				********
									-	↑^:::·^::				*********
SPT (c)	16.00	25		50				50	16.00-	X , X				
SFT (C)	50 blows in		6mm	30				30	10.00	××.				**********
В	50 5.0115 111	10.								X X X .				
									_	.xx.				***********
									-	×				
									16.50-	x · · · x				*********
									-	x				
									-	X X				********
									-	````				**********
SPT (c)	17.00	25	2	50				50	17.00-	X _x x				
SPT (C)	50 blows in							30	17.00	xx.				*********
	30 810 113 111	101	12							X X X .				
									-	.xx.				**********
									-	x				
									17.50-	x				***************************************
									-	x				
									-	-X X				*********
										·				
SPT (c)	18.00	25		50				50	18.00-	x,.x				*********
311 (c)	50 blows in		34mm					30	- 10.00	x x .				
В									-	× · · × · · × ·				************
									-	xx.				
									-	X X X .				
									18.50-	хх.				
									-	×				
									-	x x .				
										·				
SPT (c)	19.00	25		50				50	19.00-	Χ				
(-)	50 blows in		39mm						-	[xx.				
									-	X X X .				
									-	X X .				
									-	χ _X _X				
									19.50-	хх.				
									-	×:				***************************************
										, x				
										y				
SPT (c)	20.00	25		50				50	20.00-	x x				**********
(-,	50 blows in		31mm											

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomas

				CABLE F	PERCUSSIO	N BOREHOLI	RECORD
		145		Exploratory Hole No:			внз
Site Address:	Woking Football Club, Ki	ingfield Road, Woking, Surrey,	GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	MD			Date Commenced:			04/03/2019
Checked By:	PSw			Date Completed:			05/03/2019
Type and diameter of equipment:	DANDO 2000 Cable Pero	cussive Rig		Sheet No:			5 Of 5
Water levels recorded during bo	ring, m						
Date:	04/03/2019						
Hole depth:	25.00						
Casing depth:							
Level water on strike:	2.90						
Water Level after 20mins:	2.70						
Remarks							
1:	•						•
2:							
3:							

4:		Sampl	sample or Tests								Strata			
	Depth				Result				1		Depth	Water	Strata Description	Installation
Туре	(mbgl)	75	75	75	75	75	75	N	_	Legend	(mbgl)	Strikes (mbgl)	Strata Description	installation
SPT (c)	20.00	25		50				50	20.00	.хх.			Dense becoming very dense green to grey slightly	******
	50 blows in	R3 for	31mm						-	1			silty SAND. (BAGSHOT FORMATION)	
В										. X X				
									_	×				
									20.50	x x				
									-	×:				
									_	× × .				
									-	× · · × · · ×				
SPT (c)	21.00	25		47	3			50	21.00	××.				
	3 blows in R	4 for 3	3mm							,				
									_	. x x .				
									-	X X X .				
									21.50	.xx.				
									_	X X X				
									-	××.				
										××.				
SPT (c)	22.00 50 blows in	25 R3 for	33mm	50				50	22.00-	××.				
В									-	X X X .				
									-	X X				
									22.50-	X , X X				
									-	X X .				
									-	X				
									_					
									23.00-	X X .				
									-	- ^ · · · · ^ · ·				
										- X X .				
									-	×				
SPT (c)	23.50	25		50				50	23.50—	××.				
	50 blows in	R3 for	27mm						-	x				
									_	× × .				
									-	X : X : X :				
									24.00—	. x x .				
									-	X X X .				
									-	××.				
CDT (a)	24 50	25		50				50	24.50—	X X X .				
SPT (c)	24.50 50 blows in	25 R3 for	27mm					30	24.50-	.xx.				
В									-	X X X .				
									-	X X				
									25.00-	X X X .	25.00			*********

				CABLE F	PERCUSSIO	N BOREHOLE	RECORD
		113		Exploratory Hole No:			вн4
Site Address:	Woking Football Club, Ki	ngfield Road, Woking, S	urrey, GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	MD			Date Commenced:			06/03/2019
Checked By:	PSw			Date Completed:			06/03/2019
Type and diameter of equipment:	DANDO 2000 Cable Perc	ussive Rig		Sheet No:			1 Of 5
Water levels recorded during bo	ring, m						
Date:	05/03/2019						
Hole depth:	25.00						
Casing depth:							
Level water on strike:	3.40						
Water Level after 20mins:	2.90					-	

1: *Field description

3:														
4:														
		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)				Resul					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
	, ,,	75	75	75	75	75	75	N	0.00		,	(IIIDGI)		
									0.00 —				Soft consistency* brown sandy CLAY containing rootlets. Sand is fine. (TOPSOIL)	
=0									_				rodiets. Sand is line. (101 5012)	
ES D	0.25								_					
ES	0.50								0.50 —					
									_		0.70		Madi and an about the same all and a same all a same all and a same all a	
									_	X X			Medium dense becoming very dense yellow to grey silty gravelly SAND. Sand is fine to medium.	
									-	X			(BAGSHOT FORMATION)	
ES D	1.00								1.00 —	X X				
SPT	1.20	3	4	4	3	4	4	15	_	X · . · ^ · . × . ·				
В									_	X X				
									_	X				
									1.50 —	X X				
									_	X · . · ^ · . × . ·				
									_	[X X				
									_	X				
D SPT	2.00	3	3	4	4	5	7	20	2.00 —	X X .				
В				-	-		′	20	_	X X				
									_	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
									-	X ^ X				
									2.50 —	^ ^				
									_	X X.				
									-	· ^ · · · · · · · · · · · · · · · · · ·				
D	3.00								3.00 —	X X				
S	3.00	4	5	7	7	8	9	31	3.00 —					
В									_	X · . · . · . X . ·				
									_	^^ · · · ^ · · ^ · ·				
									3.50 —	X X .				
									3.30 -	· · · · × · · · ·				
									_	X X .				
									-	×				
D	4.00								4.00 —	X X .				
SPT	1.00	4	5	7	7	8	9	31	-	×				
В									_	X X				
									-	X X X X X X X X X X X X X X X X X X X				
									4.50 —	ХХ.				
									-	×				
									-	x · · · x				
									-	×				
D	5.00								5.00 —	, , , , x,				
	1 5.00	1	1	1	1	1	1	1	1 5.55	1		1		1

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomas

				CABLE P	ERCUSSIO	N BOREHOLE RECORD
				Exploratory Hole No:		вн4
Site Address:	Woking Football Club, Ki	ngfield Road, Woking, Surrey	, GU22 9AA	Project No:		P1381J1460
Client:	Goldev Woking Ltd			Ground Level:		
Logged By:	MD			Date Commenced:		06/03/2019
Checked By:	PSw			Date Completed:		06/03/2019
Type and diameter of equipment:	DANDO 2000 Cable Pero	ussive Rig		Sheet No:		2 Of 5
Water levels recorded during bo	oring, m					
Date:	05/03/2019					
Hole depth:	25.00					
Casing depth:						
Level water on strike:	3.40					
Water Level after 20mins:	2.90					
Remarks						
1: *Field description					•	·
2:						

-

		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)				Result	t				Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
D	5.00	75	75	75	75	75	75	N	5.00 -			(mbgi)		
U	5.00								5.50 -	X X X X X X X X X X X X X X X X X X X			Medium dense becoming very dense yellow to grey silty gravelly SAND. Sand is fine to medium. (BAGSHOT FORMATION)	
SPT B	6.00	9	11	13	12	13	14	52	6.00 -	X X X X X X X X X X X X X X X X X X X				
									6.50 -	X X X X X X X X X				
D SPT (c)	7.00	13	12	25	25			50	7.00 -	X X X X X	7.20			
D.	25 blows in	R4 for	47mm	ı						× × .	7.20		Very dense dark grey slighlty silty SAND. Sand is fine to medium. (BAGSHOT FORMATION)	
B SPT (c)	8.00	10	15	23	22			45	7.50 -	X X X X X X X X X X X X			Tine to medium. (BAGSHOT FORMATION)	
	22 blows in	R4 for	41mm							××.				
									8.50 —	X X X X X X X X X X X X X X X X X X X				
D SPT (c)	9.00	9	16	21	24			45	9.00 -	·				
(c)	24 blows in							.5		x x				
В									9.50 -	X X X X X X X X X X X X X X X X X X X				
D CDT (-)	10.00	1.2	12	36	3.4			F.	10.00-	. x x				XXXXXXXX
SPT (c)	24 blows in	12	13	26	24			50						

24 blows in R4 for 39mm

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample

Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD

T: 0843 289 2187 E: info@jomasassociates.com W: www.jomasassociates.com

				CABLE I	PERCUSSIO	N BOREHOLE	E RECORD
		145		Exploratory Hole No:			вн4
Site Address:	Woking Football Club, K	ingfield Road, Woking, Su	ırrey, GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	MD			Date Commenced:			06/03/2019
Checked By:	PSw			Date Completed:			06/03/2019
Type and diameter of equipment:	DANDO 2000 Cable Pero	cussive Rig		Sheet No:			3 Of 5
Water levels recorded during bo	ring, m						
Date:	05/03/2019						
Hole depth:	25.00						
Casing depth:							
Level water on strike:	3.40					•	
Water Level after 20mins	2 90						

1: *Field description

		Carry!	T	o o b -							Chu-t-			
		Sampi	e or To		Result						Strata	Water		Ttll-t
Туре	Depth (mbgl)	75	75	75	75	75	75	N		Legend	Depth (mbgl)	Strikes (mbgl)	Strata Description	Installati
D	10.00	, 5	,,,	,,,	,,,	, 5	,,,		10.00	.хх.			Very dense dark grey slightly silty SAND, Sand is	******
SPT (c)		12	13	26	24			50	_	^ : : ; · · ^ : ·			Very dense dark grey slighlty silty SAND. Sand is fine to medium. (BAGSHOT FORMATION)	******
2	24 blows in	R4 for	39mm						_	X				******
									_	· ^ · · ;; · · ^ · ·				*******
									10.50	x, x				******
									-	× · · · × ·				******
									-	× _× ×				******
									-	××.				- XXXX
									-	X X X				******
D CDT (1)	11.00	4.2	4.5	25	25				11.00—	××.				******
SPT (c)	25 blows in	13 P4 for	12 32mm	25	25			50	_	×				- XXXX
В	23 DIOWS III	101	DZIIIIII						_	× × .				******
_									_	×:::::				*****
									11.50—	· v. · · v.				******
									-					******
									-	X x				*****
										^ : : ;: · ^ : :				******
D	12.00								12.00-	x · . ·^. · . x . ·				******
SPT (c)	12.00	13	12	27	23			50	_	××.				*****
	23 blows in	R4 for	21mm						-	××				- XXXXX
									-	X X				******
										××				******
									12.50—	××.				******
									_	χ _X _X				*****
									_	xx.				******
									_	X X X .				
D	13.00			١.,					13.00—	××.				
SPT (c)	26 blows in	10 P4 for	15 47mm	24	26			50	_	×*.				
В	20 blows III	101	77111111						_	× × .				******
_									_	×:::::				- XXXXX
									13.50—	· v. · · v.				******
									-	·				******
									-	X x				*****
										^ : : ;: · ^ : :				- XXXXX
D	14.00								14.00—	x · . ·^. · . x . ·				******
SPT (c)		10	12	15	19	16		50	-	x x .				******
	16 blows in	R5 for	29mm						-	××				- XXXXX
В									-	xx				*****
									14.50	XXX				
									14.50—	××.				
										X X				
									_	× × .				******
									_	X X X .				******
D	15.00								15.00—	۸×.				
SPT (c)		15	10	21	29			50						

29 blows in R4 for 59mm
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample
Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD
T: 0843 289 2187 E: info@jomasassociates.com W: www.jomasassociates.com

				CABLE F	PERCUSSIO	N BOREHOLE	RECORD
		115		Exploratory Hole No:			вн4
Site Address:	Woking Football Club, Ki	ingfield Road, Woking, Sur	rey, GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	MD			Date Commenced:			06/03/2019
Checked By:	PSw			Date Completed:			06/03/2019
Type and diameter of equipment:	DANDO 2000 Cable Pero	cussive Rig		Sheet No:			4 Of 5
Water levels recorded during bo	ring, m						
Date:	05/03/2019						
Hole depth:	25.00						
Casing depth:							
Level water on strike:	3.40						
Water Level after 20mins:	2.90						
Remarks							
1: *Field description							
2.							

1:														
		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)	75			Resul	t 75	75	l NI		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installati
D	15.00	/5	75	/5	75	/5	75	N	15.00-					
SPT (c)	15.00	15	10	21	29			50	13.00	.xx.			Very dense dark grey slighlty silty SAND. Sand is fine to medium. (BAGSHOT FORMATION)	********
Di i (c)	29 blows in							50		X X X .			Time to mediam. (DAGSHOT FORMATION)	*******
В										.xx.				*******
									-	×:.:.				*******
									15.50-	× · · · × ·				********
									-	_ ```.				*******
									-	-Xx.				******
									-	_ × × . !				*******
									-	× × × .				********
SPT (c)	16.00	11	14	23	27			50	16.00-	·××.				*******
	27 blows in	R4 for	22mm	ı						· · · · · · ·				********
В										Xx.				- XXXXX
									-	· · · · · · · · ·				*******
										X X X .				*******
									16.50-	. x x .				
									-	×:				*******
										_`x · · · x				*******

SPT (c)	17.00	11	14	25	25			50	17.00-	X				********
511 (c)	25 blows in				23			50		××.				********
										× · · × · · × ·				*******
									-	. x x .				*******
									-	×				********
									17.50-					
									-	+ ^ : : ; : · ^ : :				********
									-	-xx.				********
									-	-[× × .]				********
									-	X X X .				*******
SPT (c)	18.00	15	10	31	19			50	18.00	. x x .				*******
P	19 blows in	R4 for	21mm							×:.;.				
В										_`x · · · x				*******

									18.50-	Χ				
										. x x				
									-	X X X .				*******
										. x x .				***************************************
									-	×				********
SPT (c)	19.00	25		50				50	19.00-					
	50 blows in	R3 for	42mm	ı					-	- ^ : : ; · · ^ : :				
В									-	-X				
									-	X X				********
										X X X .				
									19.50-	.хх.				*******
									-	××				********
									-	_ X X				*******
										- ^ · · · · · · ·				********
	20.00								20.00	×				*********
D CDT (1)	20.00	2.5							20.00-					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SPT (c)		25		50		1		50						

				CABLI	E PERCUSSIO	N BOREHOLE	E RECORD
				Exploratory Hole No:			вн4
Site Address:	Woking Football Club, K	ingfield Road, Woking	, Surrey, GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	MD			Date Commenced:			06/03/2019
Checked By:	PSw			Date Completed:			06/03/2019
Type and diameter of equipment:	DANDO 2000 Cable Per	cussive Rig		Sheet No:			5 Of 5
Water levels recorded during bo	oring, m						
Date:	05/03/2019						
Hole depth:	25.00						
Casing depth:							
Level water on strike:	3.40						
Water Lavel after 20mine.	2.00						

1: *Field description

:														
:														
		Samp	le or T	ests							Strata			
Туре	Depth (mbgl)		T		Resul					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installatio
D	20.00	75	75	75	75	75	75	N	20.00			(13)		
SPT (c)	20.00	25		50				50	-	x x			Very dense dark grey slighlty silty SAND. Sand is fine to medium. (BAGSHOT FORMATION)	
	50 blows in	R3 for	39mm						-	X X X .			(========,	********
									-	x x				********
									-	X X X .				
									20.50	хх.				********
										X X X .				*******
									_	хх.				
									_	× · · × · · ×				
									21.00—	x x .				*******
									-	x				
										X X				********
									_	x				********
SPT (c)	21.50	25		50				50	21.50—	X X .				
	50 blows in	R3 for	41mm						-	·				
В									-	X				
									_	^ · · · · · ^ · ·				********
									22.00—	x,x				
									_	××.				
									-	X , X X .				
									-	××.				*********
CDT (-)	22.50	25							22.50	X X X .				
SPT (c)	22.50 50 blows in	25 R3 for	36mm	50				50	22.50—	xx.				
	30 BIOWS III	101	John						-	X X X .				
									_	хх.				
									_	X X X .				
									23.00—	××.				
										×*				
									_	× × .				*********
									_	×				********
SPT (c)	23.50	25		50				50	23.50—	· x · · · x				
	50 blows in	R3 for	26mm						-	x				*********
В									_	X X .				********
SPT (c)	24.00	25		50				50	24.00—	X X				
	50 blows in		29mm						-	X X .				
									-	X X X .				
									_	X X .				
									24.50—	X X X .				
									24.30	хх.				
									_	X X X				
									-	X . X . X . X . X . X . X . X . X . X .				
									_	X X X .	25.00			
D	25.00								25.00—		23.00			XXXXXXX

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomas

			WINDOW/WINDOWLESS	SAMPLING BOREHOLE RECORD
			Exploratory Hole No:	ws1
Site Address:	Woking Football Club, Kii	ngfield Road, Woking, Surrey, GU22 9AA	Project No:	P1381J1460
Client:	Goldev Woking Ltd		Ground Level:	
Logged By:	JW		Date Commenced:	05/03/2019
Checked By:	PSw		Date Completed:	05/03/2019
Type and diameter of equipment:	Windowless Sampler	Sheet No:	1 Of 1	
Water levels recorded during bo	ring, m			
Date:	05/03/2019			
Hole depth:	3.85			
Casing depth:				
Level water on strike:	3.00			
Water Level after 20mins:				
Remarks		·		
1: Refusa at 4.0m bgl on very dens	se silty sands deposits.			
2:				

_	•
1	

4:		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)				Result					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
		75	75	75	75	75	75	N	0.00 -	******		(iiibgi)	Asphalt. (MADE GROUND)	********
ES	0.25								-	-	0.15		Black slightly clayey sandy gravel. Sand is fine to medium. Gravel consists of fine to coarse, angular to rounded flint, asphalt, concrete, brick and occasional ceramic fragments. (MADE GROUND)	-
ES	0.50								0.50 -	-	0.70		Black clayey gravelly sand. Sand is medium. Gravel	
ES SPT	1.00	2	2	2	3	2	2	9	1.00 -		1.30		consists of fine to coarse, sub-angular to rounded flint with occasional asphalt fragments. (MADE GROUND)	
D	1.50								1.50 -				Loose green to grey silty very gravelly SAND. Sand is fine. Gravel consists of fine to medium, sub-angular to rounded flint. (KEMPTON PARK GRAVEL)	
D SPT	2.00	3	4	2	2	2	2	8	2.00 —	d	1.80		Loose orange to brown mottled grey clayey silty very sandy GRAVEL. Sand is fine. Gravel consists of fine to coarse, sub-rounded to rounded flint. (KEMPTON PARK GRAVEL)	
									2.50 -	× × × ×	2.50		Medium dense rapidly becoming very dense grey silty SAND. Sand is coarse. (BAGSHOT FORMATION)	
D SPT	3.00	1	6	5	8	7	7	27	3.00 -	X X X X X X X X X X X X X X X X X X X				
SPT	3.70	4	14	22	46			68	3.50 — -	X . X . X X . X X . X X X . X X . X . X X . X . X . X . X . X . X . X . X				
	Nequi = 136	5								X X	4.00			
									4.00 -	-	4.00			
									4.50 -					
									5.00 —	-				

				WINDOW/WINI	OWLESS S	SAMPLING BO	DREHOLE RECORD	
		Exploratory Hole No:			WS2			
Site Address:	Woking Football Club, Kir	ngfield Road, Woking, Su	rrey, GU22 9AA	Project No:			P1381J1460	
Client:	Goldev Woking Ltd			Ground Level:				
Logged By:	JW			Date Commenced:		05/03/2019		
Checked By:	PSw			Date Completed:			05/03/2019	
Type and diameter of equipment:	Windowless Sampler			Sheet No:			1 Of 1	
Water levels recorded during bo	ring, m							
Date:	05/03/2019							
Hole depth:	4.45							
Casing depth:								
Level water on strike:	3.00							
Water Level after 20mins:						-		

1: Refusal at 4.45m bgl on very dense sand deposits.

_		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)				Resul	t				Legend Depth Strikes		Water Strikes	Strata Description	Installatio
	(IIIDGI)	75	75	75	75	75	75	N			(IIIDGI)	(mbgl)		
									0.00 -	***************************************	0.05		Asphalt. (MADE GROUND)	F==1 F=
													Brown slightly clayey sandy gravel. Sand is medium to coarse. Gravel consists of fine to coarse, angular	
ES	0.25												to rounded flint, brick, concrete, asphalt with	
													occasional ash and slate fragments. (MADE GROUND)	
ES	0.50								0.50 -				,	

ES	1.00								1.00 -					
SPT		5	4	3	3	2	3	11			1.10		Medium dense brown silty slightly gravelly sand.	
													Sand is fine. Gravel consits of fine to medium,	
D	1.30									*********			sub-angular to sub-rounded flint with occasional ash and slate fragments. (MADE GROUND)	
									1.50 -		1.35			
									1.50	.00			Loose to medium dense yellow to brown silty gravelly SAND. Sand is fine to medium. Gravel	
													consists of fine to coarse, sub-rounded to rounded flint. (KEMPTON PARK GRAVEL)	
													Time: (RETH TON TARK GIOVEE)	
									1					
SPT	2.00	4	8	9	6	5	4	24	2.00 -					
D	2.30													
										· ô · · · ô · ·				
									2.50 -					
									1					
										: â: : â: .				
SPT	3.00	5	5	4	2	2	2	10	3.00 -					XXXXXX
										.6				

									3.50 -					
									3.30	.a · · · · o ·	3.60			*******
										4::::::::::			Very dense grey to brown SAND. Sand is coarse. (BAGSHOT FORMATION)	*******
D	3.80									1:::::::::				
SPT	4.00	1	4	10	16	18	22	66	4.00 -	7::::::::				

											4.45			
									4.50 -					
										1				
]				
									5.00 -					
									3.00					

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomas

				WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD				
			Exploratory Hole No:			WS3		
Site Address:	Woking Football Club, k	ingfield Road, Woking, Su	irrey, GU22 9AA	Project No:			P1381J1460	
Client:	Goldev Woking Ltd			Ground Level:				
Logged By:	JW			Date Commenced:			05/03/2019	
Checked By:	PSw			Date Completed:			05/03/2019	
Type and diameter of equipment:	Windowless Sampler			Sheet No:			1 Of 1	
Water levels recorded during box	ring, m							
Date:								
Hole depth:								
Casing depth:								
Level water on strike:								
Water Level after 20mins:								

Remarks

1: No water reported.

- 2: Refusal at 3.95m bgl on very dense sand and gravel deposits.

3:														
4:													1	
		Sampl	le or T	ests							Strata			
Туре	Depth (mbgl)	75	75	75	Result	75	75	N	-	Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
		/3	/3	/3	/3	/3	/3	IN	0.00 -	**********			Asphalt. (MADE GROUND)	*********
									-		0.15		Red to brown sandy gravel. Sand is medium. Gravel	
ES	0.20												consists of fine to coarse, angular to sub-rounded	
ES	0.40												flint, concrete, brick, asphalt with occasional glass, wires and metal. (MADE GROUND)	
									0.50 -					
									-	**********				
										********	0.85			
ES	0.90								-	-	0.05		Brown slightly clayey gravelly sand with some	*********
SPT	1.00	2	2	1	2	1	2	6	1.00 -				rootlets. Sand is fine. Gravel consists of fine to coarse, angular to rounded flint and concrete, with	
D	1.20										1.10		occasional brick fragments. (MADE GROUND)	
	1.20										\		Loose orange to brown mottled green silty very	
									-	****	1.30		gravelly SAND. Sand is fine. (KEMPTON PARK GRAVEL)	
									1.50 -	*****			No recovery.	
		١.	_	_	_		_			****	2.00			
SPT	2.00	1	2	3	5	8	7	23	2.00 -				Medium dense grey mottled orange to brown slightly silty gravelly SAND. Sand is fine to medium.	-
													Gravel consists of fine to coarse angular to rounded	
									-				flint. (KEMPTON PARK GRAVEL)	
D	2.50								2.50 -	.00				
D	2.30								2.30					
										a				
SPT	3.00	2	3	3	4	4	5	16	3.00 -	۰۵۰۰۰۰	3.00			
													Medium dense rapidly becoming very dense grey slightly gravelly SAND. Sand is coarse. Gravel	
D	3.20								-				consists of fine, sub-rounded to rounded flint. (BAGSHOT FORMATION)	
SPT	3.50	7	10	17	17	17	17	68	3.50 -					
									-					
									-	.d 0				
											3.95			
									4.00 -		3.33			
									-	-				
									:]				
									4.50 -	-				
									-					
									5.00 -	-				
İ	1	1	1	1	1	1	1		1	1		1	1	1

				WINDOW/WIN	DOWLESS	SAMPLING BO	OREHOLE RECORD
		Exploratory Hole No:			WS4		
Site Address:	Woking Football Club, Ki	ingfield Road, Woking, Su	rrey, GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	JW			Date Commenced:			05/03/2019
Checked By:	PSw			Date Completed:			05/03/2019
Type and diameter of equipment:	Windowless Sampler			Sheet No:			1 Of 1
Water levels recorded during bo	ring, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:							
Water Level after 20mins:							

No water reported.
 Borehole terminated at 0.50m bgl due to potential service.

3:														
4:														
		Sampl	e or T	ests					-		Strata		_	
Туре	Depth (mbgl)	75	75	75	Resul	t 75	75	N	-	Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
		1.5	,,,	75	,,,	,,,	,,,		0.00 -	*********			Brown sandy gravelly clay with occasional rootlets	*********
									-				Brown sandy gravelly clay with occasional rootlets. Sand is fine. Gravel consists of fine to coarse, angular to rounded flint, concrete, asphalt and brick fragments. (MADE GROUND - Topsoil)	
ES	0.25								-				fragments. (MADE GROUND - Topsoil)	
ES	0.45								0.50 -		0.48		Concrete. (MADE GROUND)	
									-		0.50		concrete. (TMDE dicond)	-
									-					
									-					
									1.00 -					
									-					
									-					
									1.50 -					
									1.50					
									-					
									-					
									2.00 -					
									2.00					
									-					
									-					
									2.50 -					
									2.30					
									-					
									-					
									3.00 -					
									3.00					
									-					
									-					
									3.50 -					
									-	_				
									-					
									4.00 -					
									-	-				
									-					
									4.50 -					
									-	\dashv				
									-					
									5.00 —					
									5.00					

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomas

				WINDOW/WIND	OWLESS S	SAMPLING BO	REHOLE RECORD	
		Exploratory Hole No:			WS5			
Site Address:	Woking Football Club, Ki	ngfield Road, Woking, Su	rrey, GU22 9AA	Project No:		P1381J1460		
Client:	Goldev Woking Ltd			Ground Level:				
Logged By:	JW			Date Commenced:		05/03/2019		
Checked By:	PSw			Date Completed:			05/03/2019	
Type and diameter of equipment:	Windowless Sampler			Sheet No:			1 Of 1	
Water levels recorded during bor	ing, m							
Date:								
Hole depth:								
Casing depth:								
Level water on strike:						•		
Water Level after 20mins:								

Remarks

No water reported.
 Refusal at 2.45m bgl on very dense sand and gravel deposits.

4:		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)				Resul	t				Legend	Depth (mbgl)	Water Strikes	Strata Description	Installation
	(IIIDGI)	75	75	75	75	75	75	N			(IIIDGI)	(mbgl)		
ES	0.25								0.00 —		0.30		Grass over brown clayey gravelly sand with occasional rootlets. Sand is fine. Gravel consists of fine to coarse, angular to rounded flint, brick and concrete. (MADE GROND - Topsoil)	
ES	0.50								0.50 —		0.70		Red to grey sandy gravel. Sand is medium. Gravel consists of fine to coarse, angular to sub-rounded flint, brick and concrete fragments. (MADE GROUND)	
SPT	1.00	2	1	1	1	1	1	4	1.00 —	6 0			Loose rapidly becoming very dense yellow to brown slightly clayey sandy GRAVEL. Sand is fine to medium. Gravel consists of fine to coarse, sub-angular to rounded flint. (KEMPTON PARK GRAVEL)	
D	1.90			47	10	10	34		1.50 —					
SPT	2.00	7	14	17	18	18	24	77	2.00 —	.000	2.45			
									3.00 —	-				
									- - - 3.50 —	-				
									4.00 —	-				
									-					
									4.50 —	- - - -				
									5.00 —					

				WINDOW/WIND	OWLESS S	SAMPLING BO	REHOLE RECORD	
		Exploratory Hole No:			WS6			
Site Address:	Woking Football Club, Ki	ngfield Road, Woking, Su	rrey, GU22 9AA	Project No:		P1381J1460		
Client:	Goldev Woking Ltd			Ground Level:				
Logged By:	JW			Date Commenced:		04/03/2019		
Checked By:	PSw			Date Completed:			04/03/2019	
Type and diameter of equipment:	Windowless Sampler			Sheet No:			1 Of 1	
Water levels recorded during bo	ring, m							
Date:	04/03/2019							
Hole depth:	3.75							
Casing depth:								
Level water on strike:	2.10					•		
Water Level after 20mins:				·				

1: Refusal at 3.88m on very dense sand and gravel deposits.

4:		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)	75	75	75	Resul	t 75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
									0.00 -	*********	0.10		Asphalt. (MADE GROUND)	******
ES	0.30									-	0.50		Red to grey sandy gravel. Sand is medium. Gravel consists of fine to coarse, angular to rounded flint, brick, concrete and asphalt fragments. (MADE GROUND)	
ES	0.60								0.50 -	-	V.30 V.0.75		Brown silty gravelly sand. Sand is medium. Gravel consists of fine to coarse, angular to rounded flint, brick and concrete. (MADE GROUND)	
ES SPT	1.00	1	0	2	2	3	3	10	1.00 -				Green to brown silty slightly gravelly sand. Sand is fine. Gravel consists of fine to medium, sub-angular flint. (MADE GROUND)	
									1.50 -		1.40		Loose to medium dense green to brown to orange slightly silty gravelly SAND. Sand is coarse. Gravel consists of fine to coarse, sub-angular to rounded	-
D	1.80												flint. (KEMPTON PARK GRAVEL)	
SPT	2.00	9	6	7	4	4	2	17	2.00 -		2.35			
									2.50 -				Dense becoming very dense grey mottled orange to brown slightly silty gravelly SAND. Sand is coarse. Gravel consists of fine, rounded flint. (KEMPTON PARK GRAVEL)	
D	2.80													
SPT	3.00	3	6	7	8	7	10	32	3.00 -	.00.				
D	3.30													
SPT	3.50	7	10	14	18	21		53	3.50 -	.d				
										.^: : .^ ·	3.88			******
									4.00 -					
									4.50 -					
									5.00 -					

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomas

		WINDOW/WINI	DOWLESS 9	SAMPLING BOREHOLE RECORD	
			Exploratory Hole No:		WS7
Site Address:	Woking Football Club, Ki	ingfield Road, Woking, Surrey, GU22 9AA	Project No:		P1381J1460
Client:	Goldev Woking Ltd		Ground Level:		
Logged By:	JW		Date Commenced:		04/03/2019
Checked By:	PSw		Date Completed:		04/03/2019
Type and diameter of equipment:	Windowless Sampler		Sheet No:		1 Of 1
Water levels recorded during bo	ring, m				
Date:	04/03/2019				
Hole depth:	4.15				
Casing depth:					
Level water on strike:	2.65				
Water Level after 20mins:					
Remarks			·		·
1: Refusal at 4.15m bgl on very de	nse sand and gravel depos	its.			
2:					
3:					
4:					

٥.

4:														
		Sampl	le or T	ests					-		Strata	107.1.	_	
Туре	Depth (mbgl)	75	75	75	Resul	t 75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
									0.00 -	*********	0.08		Asphalt. (MADE GROUND)	[- <u>-</u>]
ES	0.25										0.00		Red to grey to brown sandy gravel. Sand is medium. Gravel consists of fine to coarse, angular to rounded flint and asphalt. (MADE GROUND)	
ES	0.50								0.50 -		0.75			
ES SPT	1.00	1	2	2	2	3	5	12	1.00 -		1.10		Dark green to grey silty slightly gravelly sand. Sand is fine. Gravel consists of fine brick and asphalt fragments. (MADE GROUND)	
									1.50 -				Dense green to grey mottled orange to brown silty slightly gravelly SAND. Sand is fine to medium. Gravel consists of fine to medium, sub-anguler to rounded flint. (KEMPTON PARK GRAVEL)	
D SPT	2.00	6	7	12	14	10	7	43	2.00 -					
D SPT	3.00	3	5	6	7	8	7	28	3.00 -	.d	2.90		Very dense light brown occasionally mottled orange to brown slightly gravelly SAND. Sand is coarse. Gravel consists of fine, rounded flint. (KEMPTON PARK GRAVEL)	-
SPT	3.70	8	10	14	15	15	16	60	3.50 -					
									4.50 -		4.15			

				WINDOW/WIND	OWLESS S	SAMPLING BO	OREHOLE RECORD
		1/15		Exploratory Hole No:			WS8
Site Address:	Woking Football Club, Ki	ngfield Road, Woking, Su	rrey, GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	JW			Date Commenced:			04/03/2019
Checked By:	PSw			Date Completed:			04/03/2019
Type and diameter of equipment:	Windowless Sampler			Sheet No:			1 Of 1
Water levels recorded during bo	ring, m						
Date:	04/03/2019						
Hole depth:	3.95						
Casing depth:							
Level water on strike:	1.10						
Water Level after 20mins:	1.55						

1: Refusal at 3.95m bgl on very dense sand and gravel deposits.

		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)				Resul					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installatio
		75	75	75	75	75	75	N	0.00 -			(
ES	0.30										0.10		Asphalt. (MADE GROUND) Red to grey slightly clayey sandy gravel. Sand is medium. Gravel consists of fine to coarse, angular to sub-rounded flint, brick, concrete and asphalt fragments. (MADE GROUND)	
									0.50 -	-	0.40		Yellow gravelly sand. Sand is medium to coarse. Gravel consists of fine to coarse, angular flint with occasional brick and asphalt fragments. (MADE GROUND)	
ES SPT	1.00	5	4	6	5	4	2	17	1.00 -		1.10		Dark grey silty gravelly sand. Sand is fine to medium. Gravel consists of fine to coarse, sub-angular to rounded flint. (KEMPTON PARK GRAVEL)	
5			·			·	_	17	1.50 -				Medium dense brown mottled orange to grey silty slightly gravelly SAND. Sand is fine to medium. Gravel consists of fine, rounded flint. (KEMPTON PARK GRAVEL)	
D SPT	2.00	1	2	3	5	7	8	23	2.00 -		2.05		Medium dense becoming very dense yellow to brown occasionally mottled orange to grey gravelly SAND. Sand is coarse. Gravel consists of fine to	-
									2.50 -				medium, sub-rounded to rounded flint. (KEMPTON PARK GRAVEL)	
D SPT	3.00	8	5	6	5	5	9	25	3.00 -					
SPT	3.50	19	12	20	19	19	19	77	3.50 -					
									4.00 -		3.95			
									4.50 -	_ _ _				

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomas

				WINDOW/WIND	OWLESS S	SAMPLING BOREHOLE RECORD
		1.5		Exploratory Hole No:		WS9
Site Address:	Woking Football Club, K	ingfield Road, Woking, Su	rrey, GU22 9AA	Project No:		P1381J1460
Client:	Goldev Woking Ltd			Ground Level:		
Logged By:	JW			Date Commenced:		04/03/2019
Checked By:	PSw			Date Completed:		04/03/2019
Type and diameter of equipment:	Windowless Sampler			Sheet No:		1 Of 1
Water levels recorded during bor	ing, m					
Date:	04/03/2019					
Hole depth:	3.75					
Casing depth:						
Level water on strike:	1.50					
Water Level after 20mins:						

Remarks

1: Refusal at 3.75m bgl on very dense sand deposits.

2: * Field description

4:		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)				Result					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
		75	75	75	75	75	75	N	0.00 -	***********		(25.)	Acricality (MADE COOLINID)	********
ES	0.20								-		0.12		Asphalt. (MADE GROUND) Red to grey sandy gravel. Sand is medium. Gravel consists of fine to coarse, angular to sub-rounded flint, brick, concrete and asphalt fragments. (MADE GROUND)	
ES	0.50								0.50 -		0.70		Brown slightly clayey gravelly sand. Sand is fine. Gravel consists of fine to medium, angular to sub-rounded flint with occasional brick and asphalt fragments. (MADE GROUND)	
ES SPT	0.90 1.00	5	8	9	11	8	8	36	1.00 -				Dense orange to brown occasionally mottled green to grey silty gravelly SAND. Sand is fine to medium. Gravel consists of fine to coarse sub-angular to rounded flint. (KEMPTON PARK GRAVEL)	
D	1.50								1.50 -		1.60			
									-		2.00		Medium dense* grey mottled orange to brown silty slightly gravelly SAND. Sand is fine. Gravel consists of fine, sub-rounded to rounded flint. (KEMPTON PARK GRAVEL)	
SPT	2.00	2	2	3	3	4	6	16	2.00 -		2.00		Medium dense becoming very dense light orange to brown to grey SAND. Sand is coarse. (BAGSHOT FORMATION)	
D	2.50								2.50 -	_				
SPT	3.00	2	3	5	9	9	9	32	3.00 -					
SPT	3.50	9	17	22	26	30		78	3.50 —		3.75			
									4.00 -	-				
									4.50 —	-				
									5.00 —					

				WINDOW/WINI	OWLESS S	SAMPLING BO	DREHOLE RECORD
				Exploratory Hole No:			WS10
Site Address:	Woking Football Club, Ki	ngfield Road, Woking, Sur	rey, GU22 9AA	Project No:			P1381J1460
Client:	Goldev Woking Ltd			Ground Level:			
Logged By:	JW			Date Commenced:			04/03/2019
Checked By:	PSw			Date Completed:			04/03/2019
Type and diameter of equipment:	Windowless Sampler			Sheet No:			1 Of 1
Water levels recorded during bo	ring, m						
Date:	04/03/2019						
Hole depth:	3.95						
Casing depth:							
Level water on strike:	3.00						

Water Level after 20mins:

1: Refusal at 3.95m bgl on very dense silty sand deposits.

Sample or Tests Depth Туре

Strata Water Strikes Result Strata Description Installation Depth Legend (mbgl) (mbgl) 75 75 75 75 75 N Asphalt. (MADE GROUND) 0.15 Brown sandy gravel. Gravel consists of fine to ES 0.25 coarse, sub-angular to sub-rounded flint, brick and asphalt fragments. (MADE GROUND) 0.30 Green to grey silty gravelly SAND. Gravel consists of fine to coarse, sub-rounded to rounded flint. (KEMPTON PARK GRAVEL) ES 0.50 0.50 -ES 1.00 1.00 -1.10 5 Medium dense green to orange slightly gravelly SAND. Sand is medium to coarse. Gravel consists of fine, sub-rounded to rounded flint. (KEMPTON PARK GRAVEL) SPT 8 8 28 1.50 -2.00 -2.00 2 1 8 SPT 2 1 2 3 2.30 . x . . . x . Medium dense becoming very dense grey occasionally mottled orange slightly silty SAND. Sand is coarse. (BAGSHOT FORMATION) 2.50 — 💢 💢 💥 .x...x. 3.00 SPT 5 4 4 11 24 · x . · . · x . 3.50 -SPT 8 17 24 67 3.60 26 ×...×. 3.95 4.00 4.50 -5.00 -

> Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomasassociates.com W: www.jomasassociates.com

APPENDIX 3 – CHEMICAL LABORATORY TEST RESULTS

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 - November 2019

Emma Hucker Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: Jomas Associates -

Analytical Report Number: 19-32465

Replaces Analytical Report Number: 19-32465, issue no. 1

Project / Site name: Woking Football Club, Kingfield Road, Samples received on: 05/03/2019

Woking, Surrey, GU22 9AA

Your job number: JJ1460 Samples instructed on: 11/03/2019

Your order number: P1381JJ1460.8 Analysis completed by: 22/03/2019

Report Issue Number: 2 **Report issued on:** 22/03/2019

Samples Analysed: 17 soil samples

Signed:

Rexona Rahman Head of Customer Services

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Page 1 of 18

Page 2 of 18

Analytical Report Number: 19-32465

Project / Site name: Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA Your Order No: P1381JJ1460.8

Lab Sample Number				1174615	1174616	1174617	1174618	1174619
Sample Reference				WS1	WS1	WS2	WS3	WS3
Sample Number				None Supplied				
Depth (m)				0.50	1.00	0.50	0.40	0.90
Date Sampled				05/03/2019	05/03/2019	05/03/2019	05/03/2019	05/03/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	15	6.3	8.6	11
Total mass of sample received	kg	0.001	NONE	1.1	1.6	1.5	1.3	1.3
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	Amosite	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-	Not-detected	Detected	_
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	< 0.001	_
Asbestos Quantification Total	%	0.001	ISO 17025	_	_	_	< 0.001	_
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.7	7.9	8.8	9.5	8.4
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	980	450	1300	32000	9400
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.28	0.19	0.18	1.9	1.9
Water Soluble SO4 16hr extraction (2:1 Leachate		4.05		202	400	404	1010	4020
Equivalent) Total Organic Carbon (TOC)	mg/l %	1.25 0.1	MCERTS MCERTS	283 3.7	193	181	1940 0.8	1920
Total Phenois	70	0.1	MCERTS	3.7			0.8	
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	0.63	< 0.05	0.77	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2.1	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	0.35	< 0.05	1.8	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	1.4	< 0.05	33	0.75	0.28
Anthracene	mg/kg	0.05	MCERTS	0.54	< 0.05	10	0.20	0.13
Fluoranthene	mg/kg	0.05	MCERTS	2.6	0.36	45	1.1	0.61
Pyrene	mg/kg	0.05	MCERTS	2.4	0.28	37	0.94	0.62
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.6	< 0.05	21	0.54	0.42
Chrysene	mg/kg	0.05	MCERTS	1.4	< 0.05	17	0.56	0.33
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.1	< 0.05	21	0.57	0.48
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.87	< 0.05	8.7	0.35	0.28
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.7	< 0.05	18	0.55	0.42
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.90	< 0.05	7.9	0.32	0.25
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.36	< 0.05	2.6	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.1	< 0.05	9.0	0.40	0.31
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	17.9	< 0.80	234	6.24	4.13

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA Your Order No: P1381JJ1460.8

Lab Sample Number		1174615	1174616	1174617	1174618	1174619		
Sample Reference				WS1	WS1	WS2	WS3	WS3
Sample Number				None Supplied				
Depth (m)				0.50	1.00	0.50	0.40	0.90
Date Sampled				05/03/2019	05/03/2019	05/03/2019	05/03/2019	05/03/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					-	-	-	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	40	4.7	7.5	12	14
Boron (water soluble)	mg/kg	0.2	MCERTS	11	2.6	0.7	4.8	5.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	< 0.2	< 0.2	0.2	0.3
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	11	19	23	21
Copper (aqua regia extractable)	mg/kg	1	MCERTS	140	7.9	20	38	40
Lead (aqua regia extractable)	mg/kg	1	MCERTS	930	29	71	69	60
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	3.0	< 0.3	< 0.3	< 0.3	0.4
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	33	5.3	8.4	16	10
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	380	19	63	140	160
Monoaromatics & Oxygenates Benzene	ug/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
o-xylene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1	-
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	_	_	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001			< 0.001
TPH-CWG - Aliphatic >EC6 - EC6 TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001			< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS		< 1.0			< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0		-	< 2.0
TPH-CWG - Aliphatic > EC16 - EC21	mg/kg	8	MCERTS	_	< 8.0	_		< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	< 8.0		-	12
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	=	< 10	-	-	12
, , , , , , , , , , , , , , , , , , , ,	J. J							
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	-	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS		< 1.0	-	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	-	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	< 10	-	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	1	< 10	-	-	20
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	-	-	25
								
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	-	< 2.0	< 2.0	-
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	-	20	< 4.0	-
TPH (C16 - C21)	mg/kg	1	MCERTS	7.8	-	270	4.7	-
TPH (C21 - C40)	mg/kg	10	MCERTS	120	-	1200	530	-
TPH Texas (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1	-

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Page 3 of 18

Analytical Report Number: 19-32465

Project / Site name: Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA Your Order No: P1381JJ1460.8

Lab Sample Number				1174615	1174616	1174617	1174618	1174619
Sample Reference				WS1	WS1	WS2	WS3	WS3
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.00	0.50	0.40	0.90
Date Sampled				05/03/2019	05/03/2019	05/03/2019	05/03/2019	05/03/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs	-		•		•	-	-	•
Chloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Chloroethane	μg/kg	1	NONE	-	< 1.0	-	-	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Vinyl Chloride	μg/kg	1	NONE	-	< 1.0	-	-	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	-	< 1.0	-	-	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	-	< 1.0	-	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
2,2-Dichloropropane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Trichloromethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,2-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,1-Dichloropropene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	< 1.0	-	-	< 1.0
Benzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Trichloroethene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Dibromomethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Tetrachloroethene	μg/kg	1	NONE	-	< 1.0	-	-	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025 MCERTS	-	< 1.0	-	-	< 1.0
Chlorobenzene	μg/kg			-	< 1.0		-	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
p & m-Xylene Styrene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Tribromomethane	μg/kg	1	MCERTS NONE	-	< 1.0 < 1.0		-	< 1.0 < 1.0
o-Xylene	μg/kg	1	MCERTS	-	< 1.0	-		< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0		-	< 1.0
	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Isopropylbenzene	μg/kg	1		-		-	-	
Bromobenzene n-Propylbenzene	μg/kg μg/kg	1	MCERTS ISO 17025	-	< 1.0 < 1.0	-	-	< 1.0 < 1.0
2-Chlorotoluene	рд/кд µд/кд	1	MCERTS	-	< 1.0	-	-	< 1.0
4-Chlorotoluene	µg/кg µg/kg	1	MCERTS		< 1.0	-		< 1.0
1,3,5-Trimethylbenzene	рд/кд µд/kg	1	ISO 17025	-	< 1.0			< 1.0
tert-Butylbenzene	рд/кд µд/kg	1	MCERTS	_	< 1.0		_	< 1.0
1,2,4-Trimethylbenzene	рд/кд µд/kg	1	ISO 17025	_	< 1.0	-	-	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,3-Dichlorobenzene	рд/кд µд/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	_	-	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
1,2,4-Trichlorobenzene	ua/ka	1	MCERTS	-	< 1.0	-	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	_	< 1.0	_	-	< 1.0

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis. Page 4 of 18

Project / Site name: Woking Football Club, Kingfield Road, Woking, Suri Your Order No: P1381JJ1460.8

Sample Reference	Lab Sample Number				1174620	1174621	1174622	1174623	1174624
Sample Number Depth (m) Sone Supplied None Supplied									
Date Sampled Delta Sampled					None Supplied				
None Supplied None Supplie	Depth (m)				0.25	0.25	0.30	1.00	0.50
None Supplied None Supplie					04/03/2019	05/03/2019	05/03/2019		04/03/2019
Analytical Parameter Space					None Supplied			None Supplied	
Stone Content		T							
Moisture Content		Units	Limit of detection	Accreditation Status					
Total mass of sample received Kg 0.001 NONE 1.3 1.4 1.3 1.6 1.2	Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Asbestos in Soil Screen / Identification Name	Moisture Content	%	N/A	NONE	9.3	7.4	7.2	15	15
Asbestos Soil Type N/A ISO 17025 Not-detected Not-de	Total mass of sample received	kg	0.001	NONE	1.3	1.4	1.3	1.6	1.2
Asbestos Soil Type N/A ISO 17025 Not-detected Not-de									
Asbestos Quantification (Total 96 0.001 ISO 17025 - - - - - - -	Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos Quantification Total % 0.001 ISO 17025	Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	-	Not-detected
General Inorganics pH Units N/A MCERTS 8.7 10.5 10.3 7.7 9.9 Total Cyanide mg/kg 1 MCERTS <1	Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics pH Units N/A MCERTS 8.7 10.5 10.3 7.7 9.9 Total Cyanide mg/kg 1 MCERTS <.1	Asbestos Quantification Total	%	0.001	ISO 17025	-		-		-
pH - Automated									
Total Cyanide	General Inorganics								
Total Sulphate as SO ₄	pH - Automated	pH Units	N/A	MCERTS	8.7	10.5	10.3	7.7	9.9
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) g/l 0.00125 MCERTS 0.018 0.084 0.35 0.045 0.18 Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) mg/l 1.25 MCERTS 18.4 84.3 350 45.3 183 Total Organic Carbon (TOC) % 0.1 MCERTS - 0.7 0.9 - 0.7 Total Phenols Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0									
Equivalent Q/I 0.00125 MCERTS 0.018 0.084 0.35 0.045 0.18		mg/kg	50	MCERTS	540	720	2300	250	1300
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) mg/l 1.25 MCERTS 18.4 84.3 350 45.3 183 Total Organic Carbon (TOC) % 0.1 MCERTS - 0.7 0.9 - 0.7 Total Phenols Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0									
Equivalent mg/k		g/l	0.00125	MCERTS	0.018	0.084	0.35	0.045	0.18
Total Organic Carbon (TOC)	`		1 25	MOEDTO	10.4	04.2	250	45.2	100
Total Phenols Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0									
Total Phenois (monohydric) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Total Organic Carbon (TOC)	%	0.1	MCERTS	-	0.7	0.9		0.7
Total Phenois (monohydric) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Total Phenois								
Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		ma/ka	1	MCEDIC	< 1 N	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	Total Prieriois (mononyuric)	mg/kg	1 1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	Speciated PAHs								
Acenaphthylene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 Acenaphthene mg/kg 0.05 MCERTS < 0.05		ma/ka	0.05	MCEDTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 Fluorene mg/kg 0.05 MCERTS < 0.05									
Fluorene									
Phenanthrene mg/kg 0.05 MCERTS < 0.05 0.05 0.43 < 0.05 1.3 Anthracene mg/kg 0.05 MCERTS < 0.05									
Anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 0.12 < 0.05 0.24 Fluoranthene mg/kg 0.05 MCERTS 0.35 0.38 0.75 < 0.05 2.3 MCERTS 0.35 0.38 0.75 < 0.05 2.3 MCERTS 0.38 0.31 0.80 < 0.05 0.05 2.0 MCERTS 0.38 0.31 0.80 < 0.05 0.63 MCERTS 0.25 0.24 0.46 < 0.05 0.63 MCERTS 0.25 0.24 0.46 < 0.05 0.63 MCERTS 0.19 0.18 0.32 < 0.05 0.49 MCERTS 0.19 0.18 0.32 < 0.05 0.49 MCERTS 0.19 0.18 0.32 < 0.05 0.49 MCERTS 0.30 0.27 0.53 < 0.05 0.49 MCERTS 0.30 0.27 0.53 < 0.05 0.44 MCERTS 0.30 0.27 0.53 MCERTS 0.31 0.25 0.43 MCERTS 0.34 0.05 0.34 MCERTS 0.31 0.25 0.43 MCERTS 0.34 0.05 0.34 MCERTS 0.30 0.25 0.43 MCERTS 0.30 0.25 0.43 MCERTS 0.30 0.25 0.25 0.43 MCERTS 0.30 0.25 0.25 0.43 MCERTS 0.30 0.34 MCERTS 0.30 0.34 MCERTS 0.30 0.34 MCERTS 0.30 0.34 MCERTS 0.30 0.35 0.22 MCERTS 0.30 0.34 MCERTS 0.30 0.35 MCERTS 0.3									
Fluoranthene									
Pyrene mg/kg 0.05 MCERTS 0.38 0.31 0.80 < 0.05 2.0 Benzo(a)anthracene mg/kg 0.05 MCERTS 0.25 0.24 0.46 < 0.05									
Benzo(a)anthracene mg/kg 0.05 MCERTS 0.25 0.24 0.46 < 0.05 0.63 Chrysene mg/kg 0.05 MCERTS 0.19 0.18 0.32 < 0.05									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,								
Benzo(b)fluoranthene mg/kg 0.05 MCERTS 0.30 0.27 0.53 < 0.05 0.44 Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.17 0.14 0.20 < 0.05									
Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.17 0.14 0.20 < 0.05 0.20 Benzo(a)pyrene mg/kg 0.05 MCERTS 0.31 0.25 0.43 < 0.05									
Benzo(a)pyrene mg/kg 0.05 MCERTS 0.31 0.25 0.43 < 0.05 0.34 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.20 < 0.05									
Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.20 < 0.05 0.22 < 0.05 < 0.05									
Dibenz(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05									
Benzo(ghi)perylene mg/kg 0.05 MCERTS 0.24 < 0.05 0.29 < 0.05 < 0.05 Total PAH	X / / / / / /								
Total PAH									
	penzo(gni)peryiene	mg/kg	0.05	MCERIS	0.24	< 0.05	0.29	< 0.05	< 0.05
Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 2.39 1.77 4.55 < 0.80 8.00		_							
	Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	2.39	1.77	4.55	< 0.80	8.00

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis. Page 5 of 18

Page 6 of 18

Analytical Report Number: 19-32465

Project / Site name: Woking Football Club, Kingfield Road, Woking, Suri Your Order No: P1381JJ1460.8

Lab Sample Number				1174620	1174621	1174622	1174623	1174624
Sample Reference				WS4	WS5	WS6	WS6	WS7
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplie
Depth (m)				0.25	0.25	0.30	1.00	0.50
Date Sampled				04/03/2019	05/03/2019	05/03/2019	04/03/2019	04/03/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplie
		de L	Accreditation Status					
Analytical Parameter	Units	e ≡	<u> </u>					
(Soil Analysis)	द्ध	Limit of detection	tati					
		3 "	9					
Heavy Metals / Metalloids	_							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.6	17	12	5.2	13
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	0.3	1.7	0.5	1.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.4	0.7	< 0.2	0.3
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (nexavalent) Chromium (aqua regia extractable)	mg/kg	1	MCERTS	15	12	13	14	18
		1			14		6.0	27
Copper (aqua regia extractable)	mg/kg		MCERTS	14 44	14 49	19 77		
Lead (aqua regia extractable)	mg/kg	1	MCERTS				9.3	71
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	7.9	7.2	14	5.6	13
Selenium (aqua regia extractable)	mg/kg	11	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	55	80	99	18	69
M								
Monoaromatics & Oxygenates								
Benzene	ug/kg	1	MCERTS	-	-	-	< 1.0	-
Toluene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
o & m-xylene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
o-xylene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Petroleum Hydrocarbons								
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	-	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	< 8.0	-
	-	10	MCERTS	-	-	-	< 10	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10						
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10						
TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7	mg/kg mg/kg	0.001	MCERTS	-	-	-	< 0.001	-
			MCERTS MCERTS	-	-	-	< 0.001 < 0.001	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001			-	- - -		-
TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8	mg/kg mg/kg mg/kg	0.001	MCERTS	-			< 0.001	
TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1	MCERTS MCERTS MCERTS	-	-	-	< 0.001 < 0.001 < 1.0	-
TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC8 - EC10 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC12 - EC16	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS	- - -	-	-	< 0.001 < 0.001 < 1.0 < 2.0	-
TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC8 TPH-CWG - Aromatic > EC8 - EC10 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC12 - EC16 TPH-CWG - Aromatic > EC16 - EC21	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS	- - - -	-	- - -	< 0.001 < 0.001 < 1.0 < 2.0 < 10	- - -
FPH-CWG - Aromatic > EC5 - EC7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 10	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	- - - -	- - - -	- - -	< 0.001 < 0.001 < 1.0 < 2.0 < 10 < 10	- -
TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC8 - EC10 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC12 - EC16	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS	- - - - -	- - - -	- - - -	< 0.001 < 0.001 < 1.0 < 2.0 < 10	- - - -
TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC16 - EC35 TPH-CWG - Aromatic >EC16 - EC35	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 10 10	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	- - - - - -	- - - - -	- - - - -	< 0.001 < 0.001 < 1.0 < 2.0 < 10 < 10	
TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC8 - EC10 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC16 - EC12 TPH-CWG - Aromatic > EC16 - EC21 TPH-CWG - Aromatic > EC21 - EC35 TPH-CWG - Aromatic > EC21 - EC35 TPH-CWG - Aromatic (EC5 - EC35) TPH (C10 - C12)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 10 10	MCERTS	- - - - - - - - - - -	- - - - - - - - - -	- - - - - - - < 2.0	< 0.001 < 0.001 < 1.0 < 2.0 < 10 < 10 < 10	- - - - - - < 2.0
TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC8 - EC8 TPH-CWG - Aromatic > EC8 - EC10 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC12 - EC16 TPH-CWG - Aromatic > EC16 - EC21 TPH-CWG - Aromatic > EC16 - EC21 TPH-CWG - Aromatic > EC21 - EC35 TPH-CWG - Aromatic (EC5 - EC35) TPH-CWG - Aromatic (EC5 - EC35) TPH-CWG - Aromatic (EC5 - EC35) TPH (C10 - C12) TPH (C12 - C16)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 10 10 10	MCERTS	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	< 0.001 < 0.001 < 1.0 < 2.0 < 10 < 10	- - - - - - - < 2.0 < 4.0
TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC8 - EC10 TPH-CWG - Aromatic > EC8 - EC10 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC12 - EC16 TPH-CWG - Aromatic > EC12 - EC16 TPH-CWG - Aromatic > EC12 - EC35 TPH-CWG - Aromatic > EC21 - EC35 TPH-CWG - Aromatic EC21 - EC35 TPH-CWG - Aromatic EC21 - EC35 TPH-CWG - Aromatic EC5 - EC35	mg/kg	0.001 0.001 1 2 10 10 10 2 4 1	MCERTS	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	< 0.001 < 0.001 < 1.0 < 2.0 < 10 < 10 < 10	- - - - - - - - - - - - - - - - - - -
TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC8 - EC10 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC16 - EC12 TPH-CWG - Aromatic > EC16 - EC21 TPH-CWG - Aromatic > EC21 - EC35 TPH-CWG - Aromatic > EC21 - EC35 TPH-CWG - Aromatic (EC5 - EC35) TPH (C10 - C12)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 10 10 10	MCERTS	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	< 0.001 < 0.001 < 1.0 < 2.0 < 10 < 10 < 10	- - - - - - < 2.0 < 4.0

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Woking Football Club, Kingfield Road, Woking, Suri Your Order No: P1381JJ1460.8

Lab Sample Number				1174620	1174621	1174622	1174623	1174624
Sample Reference				WS4	WS5	WS6	WS6	WS7
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.25	0.25	0.30	1.00	0.50
Date Sampled				04/03/2019	05/03/2019	05/03/2019	04/03/2019	04/03/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	·				
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	_
Chloroethane	μg/kg	1	NONE	-	-	_	< 1.0	_
Bromomethane	μg/kg	1	ISO 17025	-	_	_	< 1.0	_
Vinyl Chloride	μg/kg	1	NONE	-	-	-	< 1.0	-
Trichlorofluoromethane	µg/kg	1	NONE	-	-	-	< 1.0	-
1,1-Dichloroethene	μg/kg	1	NONE	-	-	-	< 1.0	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,1-Dichloroethane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Trichloromethane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	< 1.0	-
Benzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Trichloroethene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Dibromomethane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Bromodichloromethane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	< 1.0	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	< 1.0	-
Toluene 1,1,2-Trichloroethane	μg/kg	1	MCERTS MCERTS	-	-	-	< 1.0	-
	μg/kg	1	ISO 17025	-	-	-	< 1.0	-
1,3-Dichloropropane Dibromochloromethane	μg/kg μg/kg	1	ISO 17025	-	-	-	< 1.0 < 1.0	-
Tetrachloroethene	μg/kg μg/kg	1	NONE	-			< 1.0	-
1,2-Dibromoethane	μg/kg μg/kg	1	ISO 17025	-	-	-	< 1.0	-
Chlorobenzene	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0	
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	_	_		< 1.0	
Ethylbenzene	μg/kg μg/kg	1	MCERTS	_	-	_	< 1.0	
p & m-Xylene	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0	
Styrene	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0	_
Tribromomethane	μg/kg μg/kg	1	NONE	-	-	-	< 1.0	-
o-Xylene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Bromobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	-
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
4-Chlorotoluene	μg/kg	1	MCERTS	=	-	-	< 1.0	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	-
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	-
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	< 1.0	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Butylbenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	< 1.0	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-		-	< 1.0	-

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory. Page 7 of 18 The results included within the report are representative of the samples submitted for analysis.

Page 8 of 18

Analytical Report Number: 19-32465

Project / Site name: Woking Football Club, Kingfield Road, Woking, Suri Your Order No: P1381JJ1460.8

Lab Sample Number				1174625	1174626	1174627	1174628	1174629
Sample Reference				WS7	WS8	WS9	WS9	WS10
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplie
Depth (m)				1.00	0.30	0.20	0.50	0.25
Date Sampled				04/03/2019	04/03/2019	04/03/2019	04/03/2019	04/03/2019
Fime Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplie
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	17	22	< 0.1	26
Moisture Content	%	N/A	NONE	16	3.3	2.0	7.7	6.7
Fotal mass of sample received	kg	0.001	NONE	1.5	1.4	1.4	1.3	1.5
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	=	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	-	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.2	8.9	9.5	8.0	9.5
Fotal Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Fotal Sulphate as SO ₄	mg/kg	50	MCERTS	310	3000	890	360	580
Nater Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.12	0.058	0.062	0.068	0.079
Equivalent)	mg/l	1.25	MCERTS	117	57.8	61.5	68.0	78.7
Fotal Organic Carbon (TOC)	%	0.1	MCERTS	-	1.0	1.2		0.8
(100)								
Total Phenols								
Fotal Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
				_				
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.2	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.38	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2.9	0.30	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2.8	0.35	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.6	0.20	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.1	0.17	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2.0	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.63	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.8	< 0.05	< 0.05
indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.89	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.34	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.1	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs		0.8		< 0.80	< 0.80	16.7	1.02	< 0.80

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Woking Football Club, Kingfield Road, Woking, Suri Your Order No: P1381JJ1460.8

Sample Reference				1174625	1174626	1174627	1174628	1174629
				WS7	WS8	WS9	WS9	WS10
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplier
Depth (m)				1.00	0.30	0.20	0.50	0.25
Date Sampled				04/03/2019	04/03/2019	04/03/2019	04/03/2019	04/03/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplie
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (agua regia extractable)	//	1	MCERTS	5.0	11	17	5.3	5.9
	mg/kg							
Boron (water soluble)	mg/kg	0.2	MCERTS	0.6	0.5	0.3	0.5	0.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.4	1.4	< 0.2	0.5
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	10	7.6	9.2	11	7.3
Copper (aqua regia extractable)	mg/kg	1	MCERTS	7.6	11	7.3	10	7.7
Lead (aqua regia extractable)	mg/kg	1	MCERTS	22	14	34	28	20
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	3.9	6.4	6.3	5.1	3.7
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	24	56	130	25	56
Monoaromatics & Oxygenates Benzene	ug/kg	1	MCERTS	< 1.0		_	< 1.0	
		1		< 1.0		-	< 1.0	-
Foluene Ethylbenzene	μg/kg	1	MCERTS MCERTS	< 1.0	-	-	< 1.0	-
o & m-xylene	μg/kg	1	MCERTS	< 1.0		-	< 1.0	
,	μg/kg				-			
o-xylene MTBE (Methyl Tertiary Butyl Ether)	μg/kg μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	-	< 1.0 < 1.0	-
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/kg	0.001 0.001	MCERTS MCERTS	< 0.001 < 0.001	-	-	< 0.001 < 0.001	- -
•					-	- - -		- - -
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10	mg/kg mg/kg	0.001 0.001	MCERTS MCERTS	< 0.001 < 0.001	-	-	< 0.001 < 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg mg/kg mg/kg	0.001 0.001 1	MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0	- - -	- - -	< 0.001 < 0.001 < 1.0	- - -
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC16 - EC21 TPH-CWG - Aliphatic > EC16 - EC21 TPH-CWG - Aliphatic > EC16 - EC35	mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0	- - -	- - -	< 0.001 < 0.001 < 1.0 < 2.0	- - - -
FPH-CWG - Aliphatic >EC6 - EC8 FPH-CWG - Aliphatic >EC8 - EC10 FPH-CWG - Aliphatic >EC10 - EC12 FPH-CWG - Aliphatic >EC12 - EC16 FPH-CWG - Aliphatic >EC16 - EC21 FPH-CWG - Aliphatic >EC16 - EC21 FPH-CWG - Aliphatic >EC16 - EC35	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0	- - - -	- - - -	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0	- - - -
FPH-CWG - Aliphatic >EC6 - EC8 FPH-CWG - Aliphatic >EC8 - EC10 FPH-CWG - Aliphatic >EC10 - EC12 FPH-CWG - Aliphatic >EC12 - EC16 FPH-CWG - Aliphatic >EC16 - EC21 FPH-CWG - Aliphatic >EC21 - EC35 FPH-CWG - Aliphatic >EC21 - EC35 FPH-CWG - Aliphatic (EC5 - EC35)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10			< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10	- - - - -
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC16 - EC21 TPH-CWG - Aliphatic > EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic > EC5 - EC7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 10	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10	-		< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10	- - - - - -
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC16 - EC21 TPH-CWG - Aliphatic > EC21 - EC35 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC5 - EC7	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001			< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001	
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC112 - EC16 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC21 - EC25 TPH-CWG - Aliphatic > EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC8 - EC10	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001	-		< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001	
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC16 - EC21 TPH-CWG - Aliphatic > EC16 - EC21 TPH-CWG - Aliphatic > EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC8 - EC10 TPH-CWG - Aromatic > EC10 - EC12	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0			< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0	
FPH-CWG - Aliphatic > EC6 - EC8 FPH-CWG - Aliphatic > EC8 - EC10 FPH-CWG - Aliphatic > EC10 - EC12 FPH-CWG - Aliphatic > EC12 - EC16 FPH-CWG - Aliphatic > EC16 - EC21 FPH-CWG - Aliphatic > EC21 - EC35 FPH-CWG - Aliphatic EC5 - EC35 FPH-CWG - Aromatic > EC5 - EC7 FPH-CWG - Aromatic > EC7 - EC8 FPH-CWG - Aromatic > EC7 - EC8 FPH-CWG - Aromatic > EC10 EC12 FPH-CWG - Aromatic > EC12 - EC16	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0			< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0	
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC16 - EC21 TPH-CWG - Aliphatic > EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC12 - EC16 TPH-CWG - Aromatic > EC12 - EC16 TPH-CWG - Aromatic > EC12 - EC16 TPH-CWG - Aromatic > EC16 - EC21	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 1.0 < 1.0	- - - - - - - - - - - - - - - - - - -		< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 1.0	
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC21 - EC35 TPH-CWG - Aliphatic > EC21 - EC35 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC10 - EC11 TPH-CWG - Aromatic > EC10 - EC11 TPH-CWG - Aromatic > EC11 - EC35	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0			< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	-
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC21 - EC35 TPH-CWG - Aliphatic > EC21 - EC35 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC10 - EC11 TPH-CWG - Aromatic > EC10 - EC11 TPH-CWG - Aromatic > EC11 - EC35	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 1.0 < 1.0	- - - - - - - - - - - - - - - - - - -		< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 1.0	
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC12 - EC35 TPH-CWG - Aliphatic > EC21 - EC35 TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC16 - EC21 TPH-CWG - Aromatic > EC15 - EC35 TPH-CWG - Aromatic > EC15 - EC35 TPH-CWG - Aromatic > EC15 - EC35	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10 10	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0			< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	-
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC16 - EC21 TPH-CWG - Aliphatic > EC21 - EC35 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC16 - EC12 TPH-CWG - Aromatic > EC16 - EC21 TPH-CWG - Aromatic > EC16 - EC21 TPH-CWG - Aromatic > EC16 - EC21 TPH-CWG - Aromatic > EC15 - EC35 TPH-CWG - Aromatic EC56 - EC35 TPH-CWG - Aromatic EC57 - EC35	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 1 0.001 1 10 10	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.	- - - - - - - - - - - - - - - - - - -
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC21 - EC35 TPH-CWG - Aliphatic > EC21 - EC35 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC12 - EC16 TPH-CWG - Aromatic > EC12 - EC35 TPH-CWG - Aromatic > EC21 - EC35 TPH-CWG - Aromatic EC5 - EC35) TPH (C10 - C12) TPH (C10 - C12)	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10 10 10	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0			< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	
FPH-CWG - Aliphatic > EC6 - EC8 FPH-CWG - Aliphatic > EC8 - EC10 FPH-CWG - Aliphatic > EC10 - EC12 FPH-CWG - Aliphatic > EC12 - EC16 FPH-CWG - Aliphatic > EC12 - EC16 FPH-CWG - Aliphatic > EC16 - EC21 FPH-CWG - Aliphatic > EC21 - EC35 FPH-CWG - Aliphatic > EC5 - EC7 FPH-CWG - Aromatic > EC5 - EC7 FPH-CWG - Aromatic > EC6 - EC8 FPH-CWG - Aromatic > EC10 - EC12 FPH-CWG - Aromatic > EC10 - EC12 FPH-CWG - Aromatic > EC10 - EC12 FPH-CWG - Aromatic > EC12 - EC16 FPH-CWG - Aromatic > EC12 - EC35 FPH-CWG - Aromatic > EC21 - EC35 FPH-CWG - Aromatic > EC21 - EC35 FPH-CWG - Aromatic > EC21 - EC35 FPH-CWG - Aromatic \ EC5 - EC35	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 1 2 10 10 10 10 10	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1			< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC16 - EC21 TPH-CWG - Aliphatic > EC21 - EC35 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC16 - EC12 TPH-CWG - Aromatic > EC16 - EC21 TPH-CWG - Aromatic > EC16 - EC21 TPH-CWG - Aromatic > EC16 - EC21 TPH-CWG - Aromatic > EC15 - EC35 TPH-CWG - Aromatic EC56 - EC35	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10 10 10	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0			< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.	

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis. Page 9 of 18

Analytical Report Number: 19-32465

Project / Site name: Woking Football Club, Kingfield Road, Woking, Suri Your Order No: P1381JJ1460.8

Lab Camula Number				1174625	1174626	1174627	1174620	1174620
Lab Sample Number Sample Reference				WS7	1174626 WS8	WS9	1174628 WS9	1174629 WS10
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	0.30	0.20	0.50	0.25
Date Sampled				04/03/2019	04/03/2019	04/03/2019	04/03/2019	04/03/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	Units	Limit of detection	Accreditation Status					
(Soil Analysis)	ਫ਼ੌ	it of ction	itation tus					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	-
Chloroethane	μg/kg	1	NONE	< 1.0	-	-	< 1.0	-
Bromomethane	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	-
Vinyl Chloride	μg/kg	1	NONE	< 1.0	-	-	< 1.0	-
Trichlorofluoromethane 1,1-Dichloroethene	μg/kg μg/kg	1	NONE NONE	< 1.0 < 1.0	-	-	< 1.0	-
1,1,2-Trichloro 1,2,2-Trifluoroethane			ISO 17025	< 1.0	-	-	< 1.0	-
Cis-1,2-dichloroethene	μg/kg μg/kg	1	MCERTS	< 1.0	-	-	< 1.0 < 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
1,1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
2,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Trichloromethane	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
1,2-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	-	-	< 1.0	-
Benzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Trichloroethene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Dibromomethane	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Cis-1,3-dichloropropene Trans-1,3-dichloropropene	μg/kg	1	ISO 17025 ISO 17025	< 1.0 < 1.0	-	-	< 1.0 < 1.0	-
Toluene	μg/kg μg/kg	1	MCERTS	< 1.0	-		< 1.0	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0			< 1.0	_
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	-	_	< 1.0	-
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	-
Tetrachloroethene	μg/kg	1	NONE	< 1.0	-	-	< 1.0	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	-
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
p & m-Xylene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Styrene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Tribromomethane	μg/kg 	1	NONE	< 1.0	-	-	< 1.0	-
o-Xylene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
1,1,2,2-Tetrachloroethane Isopropylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Isopropyibenzene Bromobenzene	μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	-	< 1.0 < 1.0	-
n-Propylbenzene	µg/kg µg/kg	1	ISO 17025	< 1.0	-	<u> </u>	< 1.0	-
2-Chlorotoluene	µд/кд µд/кд	1	MCERTS	< 1.0	-	-	< 1.0	-
4-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	-
tert-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	-
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0 < 1.0	-	-	< 1.0 < 1.0	-

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Page 10 of 18

Project / Site name: Woking Football Club, Kingfield Road, Woking, Suri Your Order No: P1381JJ1460.8

Lab Sample Number				1174630	1174631		
Sample Reference				WS1	WS7		
Sample Number				None Supplied	None Supplied		
Depth (m)				3.00	2.00		
Date Sampled				05/03/2019	04/03/2019		
Time Taken				None Supplied	None Supplied		
		<u> </u>	Accreditation Status				
Analytical Parameter	Units	Limit of detection	ed:				
(Soil Analysis)	<u>R</u>	# c	tus				
		3 7	ġ				
		0.4		0.1	2.1		
Stone Content	%	0.1	NONE	< 0.1	< 0.1		-
Moisture Content	%	N/A	NONE	15	17		
Total mass of sample received	kg	0.001	NONE	1.1	1.1		
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-		
Asbestos in Soil	Type	N/A	ISO 17025	-	-		
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	1	-		
Asbestos Quantification Total	%	0.001	ISO 17025	-	-		
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	8.1	7.2		
Total Cyanide	mg/kg	1	MCERTS	-	-		
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-	-		
Water Soluble SO4 16hr extraction (2:1 Leachate							
Equivalent)	g/l	0.00125	MCERTS	0.0092	0.015		
Water Soluble SO4 16hr extraction (2:1 Leachate							
Equivalent)	mg/l	1.25	MCERTS	-	-		
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	-		
Total Phenols	_		_				r
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	-		
Speciated PAHs	_						
Naphthalene	mg/kg	0.05	MCERTS	-	-		l
Acenaphthylene	mg/kg	0.05	MCERTS	-	-		
Acenaphthene	mg/kg	0.05	MCERTS	-	-		
Fluorene	mg/kg	0.05	MCERTS	-	-		
Phenanthrene	mg/kg	0.05	MCERTS	·	-		
Anthracene	mg/kg	0.05	MCERTS	-	-		
Fluoranthene	mg/kg	0.05	MCERTS	-	-		
Pyrene	mg/kg	0.05	MCERTS	-	-		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-		
Chrysene	mg/kg	0.05	MCERTS	-	-		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1	-		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1	-		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	<u>-</u>		
•							
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	-		
					•	•	1

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory. Page 11 of 18 The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number: 19-32465

Project / Site name: Woking Football Club, Kingfield Road, Woking, Suri Your Order No: P1381JJ1460.8

Lab Sample Number				1174630	1174631		
Sample Reference				WS1	WS7		
Sample Number				None Supplied	None Supplied		
Depth (m)				3.00	2.00		
Date Sampled				05/03/2019	04/03/2019		
Time Taken				None Supplied	None Supplied		
					i ''	ĺ	
		2 ⊢	Accreditation Status				
Analytical Parameter	Units	Limit of detection	a e				
(Soil Analysis)	द्ध	# c	tus				
		_ = ~	ġ				
			_				
Heavy Metals / Metalloids	_						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Boron (water soluble)	mg/kg	0.2	MCERTS	-	-		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	-		
Chromium (hexavalent)	mg/kg	4	MCERTS	-	-		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	-		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Monoaromatics & Oxygenates				_			
Benzene	ug/kg	1	MCERTS	-	-		
Toluene	μg/kg	1	MCERTS	-	-		
Ethylbenzene	μg/kg	1	MCERTS	-	-		
p & m-xylene	μg/kg	1	MCERTS	-	-		
o-xylene	μg/kg	1	MCERTS	-	-		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-		
Petroleum Hydrocarbons							
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS		r		
1			MCERTS	-	-		
		0.1	MCERTS	-	-	l .	
TPH-CWG - Aliphatic >EC5 - EC6	ma/ka			-	-		
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/ka	0.001	MCERTS				
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001 0.001	MCERTS MCERTS	-	-		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10	mg/kg mg/kg	0.001 0.001 0.001	MCERTS MCERTS MCERTS	-			
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg mg/kg mg/kg	0.001 0.001 0.001 1	MCERTS MCERTS MCERTS MCERTS	-	- - -		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS	- - -	- - -		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	-	- - - -		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC15 - EC35	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	-	- - - -		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS				
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8 8	MCERTS				
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8 8 10	MCERTS				
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC16 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001	MCERTS				
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC25 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS				
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC15 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 0.001	MCERTS				
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC12 - EC16	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 1 2	MCERTS				
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC12 - EC12 TPH-CWG - Aromatic >EC16 - EC21	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 1 2	MCERTS				
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC16 - EC21 TPH-CWG - Aliphatic > EC15 - EC35 TPH-CWG - Aliphatic > EC5 - EC7 TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC10 - EC21	mg/kg	0.001 0.001 1 1 2 8 8 10 0.001 0.001 0.001 1 1 1 1 1 1 1 1 1 1 1 1 1	MCERTS				
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC12 - EC12 TPH-CWG - Aromatic >EC16 - EC21	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 1 2	MCERTS				
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC21 - EC35 TPH-CWG - Aromatic >EC21 - EC35	mg/kg	0.001 0.001 1 1 2 8 8 10 0.001 0.001 0.001 1 1 2 10 10 10 10 10 10 10 10 10 10	MCERTS				
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC110 - EC12 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC16 - EC21 TPH-CWG - Aliphatic > EC55 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC7 - EC8 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC10 - EC15 TPH-CWG - Aromatic > EC10 - EC15 TPH-CWG - Aromatic > EC15 - EC35 TPH-CWG - Aromatic > EC15 - EC35 TPH-CWG - Aromatic EC15 - EC35 TPH-CWG - Aromatic EC15 - EC35 TPH-CWG - Aromatic EC15 - EC35	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 0.001 1 1 2 10 10	MCERTS				
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC16 - EC21 TPH-CWG - Aliphatic > EC15 - EC35 TPH-CWG - Aliphatic > EC5 - EC7 TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC10 - EC11 TPH-CWG - Aromatic > EC10 - EC21 TPH-CWG - Aromatic > EC21 - EC35 TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 1 1 10 10	MCERTS				
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC35 TPH-CWG - Aliphatic >EC3 - EC35 TPH-CWG - Aliphatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC23 TPH-CWG - Aromatic >EC10 - EC23 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC21 - EC35 TPH-CWG - Aromatic (EC5 - EC35) TPH-CWG - Aromatic (EC5 - EC35) TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 10 10 10 10 10	MCERTS				
TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC12 - EC16 TPH-CWG - Aliphatic > EC16 - EC21 TPH-CWG - Aliphatic > EC15 - EC35 TPH-CWG - Aliphatic > EC5 - EC7 TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC5 - EC7 TPH-CWG - Aromatic > EC10 - EC12 TPH-CWG - Aromatic > EC10 - EC11 TPH-CWG - Aromatic > EC10 - EC21 TPH-CWG - Aromatic > EC21 - EC35 TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 1 1 10 10	MCERTS				
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC35 TPH-CWG - Aliphatic >EC3 - EC35 TPH-CWG - Aliphatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC23 TPH-CWG - Aromatic >EC10 - EC23 TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC21 - EC35 TPH-CWG - Aromatic (EC5 - EC35) TPH-CWG - Aromatic (EC5 - EC35) TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 10 10 10 10 10	MCERTS				

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Page 12 of 18

Project / Site name: Woking Football Club, Kingfield Road, Woking, Surr Your Order No: P1381JJ1460.8

Lab Sample Number				1174630	1174631			
Sample Reference				WS1	WS7			
Sample Number				None Supplied	None Supplied			
Depth (m)				3.00	2.00			
Date Sampled				05/03/2019	04/03/2019			
Time Taken				None Supplied	None Supplied			
			Accreditation Status					
Analytical Parameter	⊊	Limit of detection	Sta					
(Soil Analysis)	Units	<u>ä</u> . ≢	at di					
(2011-11111/010)		을 뜻	s E					
			3					<u> </u>
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	-			
Chloroethane	μg/kg	1	NONE	-	-			
Bromomethane	μg/kg	1	ISO 17025	-	-			
Vinyl Chloride	μg/kg	1	NONE	-	-			
Trichlorofluoromethane	μg/kg	1	NONE	-	-			
1,1-Dichloroethene	μg/kg	1	NONE	-	-			
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-			
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-			
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-				
1,1-Dichloroethane	μg/kg	1	MCERTS MCERTS	-	-			
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-			-
Trichloromethane 1,1,1-Trichloroethane	µg/kg µg/kg	1	MCERTS	-	-			-
1,2-Dichloroethane	μg/kg	1	MCERTS		-			
1,1-Dichloropropene	μg/kg	1	MCERTS		-			
Trans-1,2-dichloroethene	μg/kg	1	NONE		-			
Benzene	μg/kg	1	MCERTS	_				
Tetrachloromethane	μg/kg	1	MCERTS	-	-			
1,2-Dichloropropane	μg/kg	1	MCERTS	_	_			
Trichloroethene	μg/kg	1	MCERTS	_	_			-
Dibromomethane	μg/kg	1	MCERTS	_	-			
Bromodichloromethane	μg/kg	1	MCERTS	-	_			
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-			
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-			
Toluene	μg/kg	1	MCERTS	-	-			
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-			
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-			
Dibromochloromethane	μg/kg	1	ISO 17025	-	-			
Tetrachloroethene	μg/kg	1	NONE	-	-			
1,2-Dibromoethane	μg/kg	1	ISO 17025	1	-			
Chlorobenzene	μg/kg	1	MCERTS	-	-			
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-			
Ethylbenzene	μg/kg	1	MCERTS	-	-			
p & m-Xylene	μg/kg	1	MCERTS	-	-			
Styrene	μg/kg	1	MCERTS	-	-			
Tribromomethane	μg/kg	1	NONE	-	-			
o-Xylene	μg/kg	1	MCERTS	-	-			
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-			
Isopropylbenzene	μg/kg	1	MCERTS	-	-			
Bromobenzene	μg/kg	1	MCERTS	-	-			
n-Propylbenzene	μg/kg	1	ISO 17025	-	-			
2-Chlorotoluene	μg/kg	1	MCERTS	-	-			
4-Chlorotoluene	μg/kg	1	MCERTS	-	-			
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-			
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-			
sec-Butylbenzene 1,3-Dichlorobenzene	μg/kg	1	MCERTS ISO 17025	-	<u> </u>			
	μg/kg	1	ISO 17025	-	-	-	-	
p-Isopropyltoluene 1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	 	
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	 	
Butylbenzene	µg/kg µg/kg	1	MCERTS		-			—
1,2-Dibromo-3-chloropropane	µд/кд µд/кд	1	ISO 17025	-	-			
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	_	<u> </u>			H
I,L, I IIICIIOIODEIIZEIIE	µg/Kg	-	PICEKIO				-	├ ───

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Page 13 of 18

Analytical Report Number: 19-32465

Project / Site name: Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA

Your Order No: P1381JJ1460.8

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1174618	WS3	0.40	120	Loose Fibres	Amosite	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

Page 14 of 18

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1174615	WS1	None Supplied	0.50	Brown loam and sand with gravel.
1174616	WS1	None Supplied	1.00	Brown loam and sand with gravel.
1174617	WS2	None Supplied	0.50	Brown loam and sand with gravel.
1174618	WS3	None Supplied	0.40	Brown sand with gravel and brick.
1174619	WS3	None Supplied	0.90	Brown sand with gravel and brick.
1174620	WS4	None Supplied	0.25	Brown loam and sand with gravel and vegetation.
1174621	WS5	None Supplied	0.25	Brown loam and sand with vegetation and gravel.
1174622	WS6	None Supplied	0.30	Brown sand with gravel and brick.
1174623	WS6	None Supplied	1.00	Light brown sandy clay.
1174624	WS7	None Supplied	0.50	Brown clay and sand with gravel and brick.
1174625	WS7	None Supplied	1.00	Brown sandy clay with vegetation.
1174626	WS8	None Supplied	0.30	Brown gravelly sand with stones.
1174627	WS9	None Supplied	0.20	Light brown sand with gravel and stones.
1174628	WS9	None Supplied	0.50	Brown sandy loam with vegetation and gravel
1174629	WS10	None Supplied	0.25	Brown clay and sand with gravel and stones.
1174630	WS1	None Supplied	3.00	Light brown sand.
1174631	WS7	None Supplied	2.00	Brown sandy clay.

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Page 15 of 18

Analytical Report Number: 19-32465

Project / Site name: Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditatio Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP-OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests"	L009-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS

Iss No 19-32465-2 Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Page 16 of 18

Project / Site name: Woking Football Club, Kingfield Road, Woking, Surrey, GU22 9AA

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
WS10		S	19-32465	1174629	С	Total cyanide in soil	L080-PL	С
WS4		S	19-32465	1174620	С	Total cyanide in soil	L080-PL	С
WS6		S	19-32465	1174623	С	Total cyanide in soil	L080-PL	С
WS7		S	19-32465	1174624	С	Total cyanide in soil	L080-PL	С
WS7		S	19-32465	1174625	С	Total cyanide in soil	L080-PL	С
WS8		S	19-32465	1174626	С	Total cyanide in soil	L080-PL	С
WS9		S	19-32465	1174627	С	Total cyanide in soil	L080-PL	С
WS9		S	19-32465	1174628	С	Total cyanide in soil	L080-PL	С

Emma Hucker Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: Jomas Associates -

UB11 1BD

Analytical Report Number: 19-31350

Replaces Analytical Report Number: 19-31350, issue no. 1

Project / Site name: Woking Football Club Kingfield Road, Samples received on: 21/02/2019

Woking, Surrey, GU22 9AA

Your job number: JJ1460 Samples instructed on: 27/02/2019

Your order number: P1381JJ1460.4 Analysis completed by: 22/03/2019

Report Issue Number: 2 **Report issued on:** 22/03/2019

Samples Analysed: 3 soil samples

Signed:

Rexona Rahman Head of Customer Services

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Iss No 19-31350-2 Woking Football Club Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Page 1 of 7

Analytical Report Number: 19-31350

Project / Site name: Woking Football Club Kingfield Road, Woking, Surrey, GU22 9AA Your Order No: P1381JJ1460.4

Lab Sample Number				1168612	1168613	1168614		
Sample Reference	•			BH1	BH1	BH2		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				0.20	2.50	5.50		
Date Sampled				20/02/2019	20/02/2019	20/02/2019		
Time Taken				None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	50	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	10	16	17		
Total mass of sample received	kg	0.001	NONE	1.1	0.44	0.47		
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile & Crocidolite	-	-		
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	-	-		
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.013	-	-		
Asbestos Quantification Total	%	0.001	ISO 17025	0.013	-	-		
General Inorganics pH - Automated	pH Units	N/A	MCERTS	11.7	9.0	9.0		
Total Cyanide	mg/kg	1 1	MCERTS	< 1	9.0	9.0		
Total Sulphate as SO ₄	mg/kg	50	MCERTS	4100	-	-		
Water Soluble SO4 16hr extraction (2:1 Leachate	IIIg/kg	30	MCERTS	4100			-	
Equivalent)	g/l	0.00125	MCERTS	0.14	0.089	0.073		
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	141		_		
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	-		
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-		
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-		
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-		
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	-		
Phenanthrene	mg/kg	0.05	MCERTS	0.24	-	-		
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-		
Fluoranthene	mg/kg	0.05	MCERTS	0.38	-	-		
Pyrene	mg/kg	0.05	MCERTS	0.33	-	-		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-		
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	-		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-		
	mg/kg	0.05	MCERTS	< 0.05	-	-		
Benzo(ghi)perylene	Hig/kg	0.05						
Benzo(ghi)perylene Total PAH	Ilig/kg	0.03					<u> </u>	

Iss No 19-31350-2 Woking Football Club Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

Page 2 of 7

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number: 19-31350

Project / Site name: Woking Football Club Kingfield Road, Woking, Surrey, GU22 9AA Your Order No: P1381JJ1460.4

Lab Sample Number	1168612	1168613	1168614					
Sample Reference				BH1	BH1	BH2		
Sample Number	None Supplied	None Supplied	None Supplied					
Depth (m)	0.20	2.50	5.50					
Date Sampled				20/02/2019	20/02/2019	20/02/2019		
Time Taken				None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	•		•			8	-	•
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.8	-	-		
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	-	-		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.2	-	-		
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	-		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	16	-	-		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	30	-	-		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	31	-	-		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	-		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	11	-	-		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	-		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	69	-	-		
Petroleum Hydrocarbons								
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	-		
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	-	-		
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	-	-		
TPH (C16 - C21)	mg/kg	1	MCERTS	8.2	-	-		
TPH (C21 - C40)	mg/kg	10	MCERTS	480	-	-		
TPH Texas (C6 - C8)	ma/ka	0.1	MCERTS	< 0.1	-	-	1	I

Iss No 19-31350-2 Woking Football Club Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Page 3 of 7

Page 4 of 7

Analytical Report Number: 19-31350

Project / Site name: Woking Football Club Kingfield Road, Woking, Surrey, GU22 9AA

Your Order No: P1381JJ1460.4

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1168612	BH1	0.20	148	Hard/ Cement Type Material & Loose Fibres	Chrysotile & Crocidolite	0.013	0.013

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Iss No 19-31350-2 Woking Football Club Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number: 19-31350

Project / Site name: Woking Football Club Kingfield Road, Woking, Surrey, GU22 9AA

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1168612	BH1	None Supplied	0.20	Brown clay and gravel with stones and tar.
1168613	BH1	None Supplied	2.50	Light grey sandy clay.
1168614	BH2	None Supplied	5.50	Light brown sandy clay.

Iss No 19-31350-2 Woking Football Club Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis. Page 5 of 7

Analytical Report Number: 19-31350

Project / Site name: Woking Football Club Kingfield Road, Woking, Surrey, GU22 9AA

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Iss No 19-31350-2 Woking Football Club Kingfield Road, Woking, Surrey, GU22 9AA JJ1460

Page 6 of 7

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH1		S	19-31350	1168612	С	Total cyanide in soil	L080-PL	С

APPENDIX 4 – GEOTECHNICAL LABORATORY TEST RESULTS

Particle Size Distribution

Watford Herts WD18 8YS Tested in Accordance with: BS 1377-2: 1990

Jomas Associates Ltd Client:

Client Address: Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

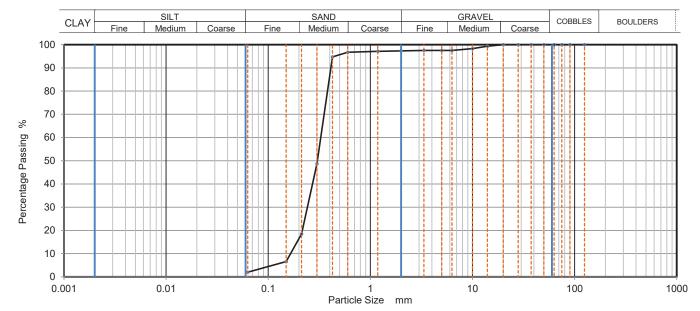
Contact: Emma Hucker

Woking Football Club, Kingfield Road, Woking Site Name: Woking Football Club, Kingfield Road, Woking Site Address:

Client Reference: JJ1460 Job Number: 19-32658 Date Sampled: 20/02/2019

i2 Analytical Ltd 7 Woodshots Meadow

Date Received: 21/02/2019 Date Tested: 18/03/2019 Sampled By: Not Given


Test Results:

Laboratory Reference: 1175812 Hole No.: BH1 Sample Reference: Not Given

Depth Top [m]: 6.50 Depth Base [m]: Not Given

Sample Type: B

Sample Description: Grey slightly gravelly slightly clayey SAND

Sievi	ing	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100					
90	100					
75	100					
63	100					
50	100					
37.5	100					
28	100					
20	100					
14	99					
10	98					
6.3	98					
5	98					
3.35	98					
2	97					
1.18	97					
0.6	97					
0.425	95	1				
0.3	49					
0.212	19	1				
0.15	7	1				
0.063	2	71				

Dry Mass of sample [g]:

1012

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	2.70
Sand	94.90
Fines <0.063mm	2.40

Grading Analysis		
D100	mm	20
D60	mm	0.327
D30	mm	0.242
D10	mm	0.166
Uniformity Coefficient		2
Curvature Coefficient		1.1

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: Approved:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager Date Reported: 26/03/2019

Darren Berrill

Geotechnical General Manager

GF 100.10

nd interpretations expressed herein are outside of the scope of the UKAS Accreditation. may not be reproduced other than in full without the prior written approval of the issuing included within the report are representative of the samples submitted for analysis, swas carried out at 12 Analytical Limited, ul. Plonierow 39, 47-171 Ruds Slaska, Poland."

Page 1 of 1

for and on behalf of i2 Analytical Ltd

TEST CERTIFICATE

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd

Client Address: Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Emma Hucker Contact:

Woking Football Club, Kingfield Road, Woking Site Name: Woking Football Club, Kingfield Road, Woking Site Address:

Test Results:

Client:

Laboratory Reference: 1175813 BH1 Hole No.: Sample Reference: Not Given

Sample Description: Grey slightly clayey SAND Client Reference: JJ1460 Job Number: 19-32658 Date Sampled: 20/02/2019 Date Received: 21/02/2019

Date Tested: 18/03/2019 Sampled By: Not Given

Depth Top [m]: 10.50

Depth Base [m]: Not Given

Sample Type: B

	01.437		SILT			SAND			GRAVEL		COBBLES	BOULDERS
	CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOULDERS
100								·		· · · · · · · · · · · · · · · · · · ·		
90	1											
80	1								+++++			
70	1								+++++			
%												
g 60									 			
Percentage Passing 00 00 00 00 00 00 00 00 00 00 00 00 00						1						
ğ 50												
e D 40												
daju 40												
ie o												
g 30						1						
20						<i>f</i>						
20												
10												
10												
0												
	.001		0.01		0.1		1		10		100	1000
·						Parti	cle Size m	nm	. •		. 30	

Sievi	ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	95	7	
0.3	53		
0.212	23	7	
0.15	9	7	
0.063	3	7	

Sample Proportions % dry mass 0.00 Very coarse

404

Dry Mass of sample [g]:

0.00 Gravel Sand 97.30 Fines < 0.063mm

Grading Analysis		
D100	mm	2
D60	mm	0.319
D30	mm	0.23
D10	mm	0.152
Uniformity Coefficient		2.1
Curvature Coefficient		1.1

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 26/03/2019

Signed:

Darren Berrill

Geotechnical General Manager

GF 100.10

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuit he results included within the report are representative of the samples submitted for analysis. he analysis was carried out at 12 Analytical Limited, ul. Pionierow 39, 41-711 Ruds Siskas, Polandi.

Client:

TEST CERTIFICATE

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

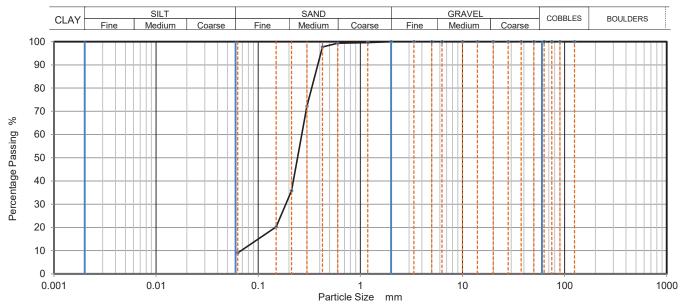
Contact: Emma Hucker

Woking Football Club, Kingfield Road, Woking Site Name: Woking Football Club, Kingfield Road, Woking Site Address:

Client Reference: JJ1460 Job Number: 19-32658 Date Sampled: 20/02/2019

Date Received: 21/02/2019 Date Tested: 18/03/2019

Sampled By: Not Given


Test Results:

Laboratory Reference: 1175814 Hole No.: BH1 Sample Reference: Not Given

Sample Description: Brownish grey slightly clayey SAND

Depth Top [m]: 14.50 Depth Base [m]: Not Given

Sample Type: B

Sievi	ng	Sedimer	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing				
125	100						
90	100						
75	100						
63	100						
50	100						
37.5	100						
28	100						
20	100						
14	100						
10	100						
6.3	100						
5	100						
3.35	100						
2	100						
1.18	100						
0.6	99						
0.425	98	1					
0.3	72						
0.212	36	7					
0.15	20	1					
0.063	10	7					

Dry Mass of sample [g]:

594

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	0.00
Sand	90.20
Fines <0.063mm	9.80

Grading Analysis		
D100	mm	2
D60	mm	0.267
D30	mm	0.186
D10	mm	0.0643
Uniformity Coefficient		4.2
Curvature Coefficient		2

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager Date Reported: 26/03/2019 nd interpretations expressed herein are outside of the scope of the UKAS Accreditation. may not be reproduced other than in full without the prior written approval of the issuing included within the report are representative of the samples submitted for analysis, swas carried out at 12 Analytical Limited, ul. Plonierow 39, 47-171 Ruds Slaska, Poland."

Darren Berrill

Geotechnical General Manager

GF 100.10

for and on behalf of i2 Analytical Ltd

TEST CERTIFICATE

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: JJ1460

Job Number: 19-32658

Date Sampled: 20/02/2019

Date Received: 21/02/2019

Date Tested: 18/03/2019

Sampled By: Not Given

Jomas Associates Ltd

Client Address: Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Emma Hucker

Woking Football Club, Kingfield Road, Woking Site Name: Woking Football Club, Kingfield Road, Woking Site Address:

Test Results:

Client:

Laboratory Reference: 1175815 BH2 Hole No.: Sample Reference: Not Given

Sample Description: Brownish grey slightly gravelly very clayey SAND Depth Top [m]: 4.50

Depth Base [m]: Not Given

Sample Type: B

		01.437		SILT			SAND			GRAVEL		COBBLES	BOULDERS
		CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOULDERS
	100					 			—				
	90	-											
	80						/						
%	70	_											
	60	-											
Percentage Passing	50												
ntage	40												
Percel	30												
ш.	20												
	10												
	0 0.	001		0.01		0.1		1		10		100	1000

Particle Size mm

0::	·	Sedimentation				
Sievi	ing	Sealmei	ntation			
Particle Size mm % Passing		Particle Size mm	% Passing			
125	100					
90	100					
75	100					
63	100					
50	100					
37.5	100					
28	100					
20	100					
14	100					
10	99					
6.3	98					
5	98					
3.35	98					
2	98					
1.18	98					
0.6	97					
0.425	96	7				
0.3	73					
0.212	51					
0.15	42					
0.063	39	7				

Dry Mass of sample [g]:

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	2.30
Sand	58.60
Fines <0.063mm	39.10

368

Grading Analysis		
D100	mm	14
D60	mm	0.244
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 26/03/2019

Signed:

Page 1 of 1

Darren Berrill

Geotechnical General Manager

GF 100.10

rpretations expressed herein are outside of the scope of the UKAS Accreditation, the reproduced other than in full without the prior written approval of the issuit of within the report are representative of the samples submitted for analysis. Irried out at 12 Analytical Limited, U. Plonierow 39, 4.7-71 Ruda Slaska, Poland.

for and on behalf of i2 Analytical Ltd

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

Jomas Associates Ltd Client:

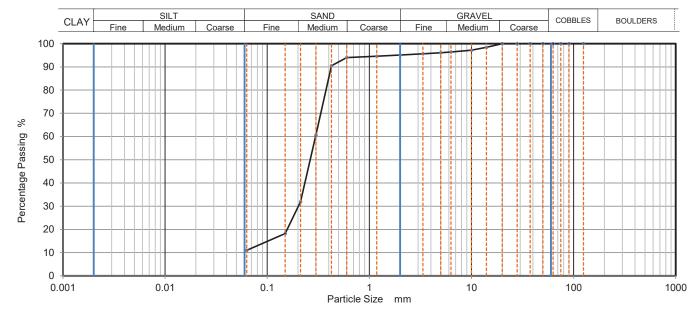
Client Address: Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Emma Hucker

Woking Football Club, Kingfield Road, Woking Site Name: Woking Football Club, Kingfield Road, Woking Site Address:

Test Results:


Laboratory Reference: 1175816 BH2 Hole No.: Sample Reference: Not Given

Sample Description: Brownish grey slightly gravelly clayey SAND Watford Herts WD18 8YS

Client Reference: JJ1460 Job Number: 19-32658 Date Sampled: 20/02/2019 Date Received: 21/02/2019 Date Tested: 18/03/2019 Sampled By: Not Given

Depth Top [m]: 7.50 Depth Base [m]: 8.00 Sample Type: B

Sievi	ng	Sedime	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing				
125	100						
90	100	1					
75	100						
63	100						
50	100						
37.5	100						
28	100						
20	100						
14	98						
10	97						
6.3	96						
5	96						
3.35	96						
2	95						
1.18	95						
0.6	94						
0.425	91	1					
0.3	61						
0.212	32	7					
0.15	18						
0.063	12	7					

Dry Mass of sample [g]:

1006

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	4.90
Sand	83.40
Fines <0.063mm	11.70

Grading Analysis		
D100	mm	20
D60	mm	0.298
D30	mm	0.202
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: Approved:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager Date Reported: 26/03/2019

Signed:

Darren Berrill

Geotechnical General Manager

GF 100.10

and interpretations expressed herein are outside of the scope of the UKAS Accreditation, may not be reproduced other than in full without the prior written approval of the issuin included within the report are representative of the samples submitted for analysis. swa carried out 12 Analytical Limited, ul. Plonietrow 39, 41-711 Ruda Slaska, Poland."

Page 1 of 1

for and on behalf of i2 Analytical Ltd

TEST CERTIFICATE

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Emma Hucker Contact:

Woking Football Club, Kingfield Road, Woking Site Name: Woking Football Club, Kingfield Road, Woking Site Address:

Test Results:

Client Address:

Client:

Laboratory Reference: 1175547 BH3 Hole No.: Not Given Sample Reference:

Sample Description: Greyish brown slightly clayey sandy GRAVEL Client Reference: JJ1460 Job Number: 19-32609 Date Sampled: 06/03/2019

Date Received: 21/02/2019 Date Tested: 18/03/2019 Sampled By: Not Given

Depth Top [m]: 2.00

Depth Base [m]: Not Given

Sample Type: B

	CLAY		SILT			SAND		GRAVEL			COBBLES	BOULDERS
	CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOULDERS
	100				1 1 1				111111	1 1 1		
	90											
	80											
%	70									Í		
	60											
Pass	50											
ıtage	40											
Percentage Passing	30											
₾.	20											
	10											
	0 —											
	0.001		0.01		0.1	Porti	1 cle Size n	am.	10		100	1000
						ган	CIE SIZE II	1111				

Siev	ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	86		
28	75		
20	50		
14	42		
10	38		
6.3	37		
5	36		
3.35	34		
2	29		
1.18	25		
0.6	22		
0.425	20	1	
0.3	15		
0.212	11	1	
0.15	8	1	
0.063	7	7	

Dry Mass of sample [g]:

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	70.80
Sand	22.40
Fines <0.063mm	6.70

5292

Grading Analysis		
D100	mm	50
D60	mm	22.8
D30	mm	2.2
D10	mm	0.19
Uniformity Coefficient		120
Curvature Coefficient		1.1

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager Date Reported: 26/03/2019

Page 1 of 1

Darren Berrill

Geotechnical General Manager

GF 100.10

pretations expressed herein are outside of the scope of the UKAS Accreditation. the reproduced other than in full without the prior written approval of the issuin d within the report are representative of the samples submitted for analysis. rrired out at 12 Analysical limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

for and on behalf of i2 Analytical Ltd

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

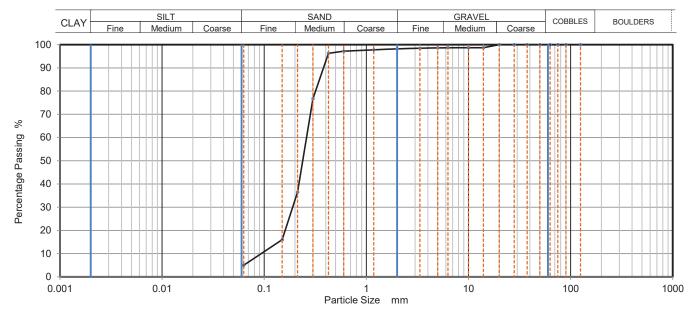
Contact: Emma Hucker

Site Name: Woking Football Club, Kingfield Road, Woking Site Address: Woking Football Club, Kingfield Road, Woking

Client Reference: JJ1460 Job Number: 19-32609 Date Sampled: 06/03/2019

Date Received: 21/02/2019 Date Tested: 18/03/2019

ld Road, Woking Sampled By: Not Given


Test Results:

Laboratory Reference: 1175548 Hole No.: BH3 Sample Reference: Not Given

Sample Description: Grey slightly clayey SAND

Depth Top [m]: 5.00
Depth Base [m]: Not Given

Sample Type: B

Siev	ring	Sedimentation					
Particle Size mm	% Passing	Particle Size mm	% Passing				
125	100						
90	100						
75	100						
63	100						
50	100						
37.5	100						
28	100						
20	100						
14	99						
10	99						
6.3	99						
5	99						
3.35	98						
2	98						
1.18	98						
0.6	97						
0.425	96						
0.3	77						
0.212	37]					
0.15	16]					
0.063	6	7[

Dry Mass of sample [g]:

s of sample [g].

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	1.80
Sand	92.70
Fines <0.063mm	5.50

486

mm	20
mm	0.26
mm	0.19
mm	0.0913
	2.8
	1.5
	mm mm

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Approved: Dariusz Piotrowski

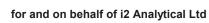
PL Geotechnical Laborator

PL Geotechnical Laboratory Manager
Date Reported: 26/03/2019

Ind interpretations expressed herein are outside of the scope of the UKAS Accreditation.

Inary not be reproduced other than in full without the prior written approval of the issuing laboratory.

Included within the report are representative of the samples submitted for analysis.


In swa carried out at 2 Analytical lumited, it. Plonieriors 93, 47-171 Ruda Slaska, Poland.*

Darren Berrill

Geotechnical General Manager

GF 100.10

TEST CERTIFICATE

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: JJ1460

Job Number: 19-32609

Date Sampled: 06/03/2019

Date Received: 21/02/2019

Date Tested: 18/03/2019

Sampled By: Not Given

rested in Accordance with Do 1977-2. 199

Client Address:

Lakeside House, 1 Furzeground Way,

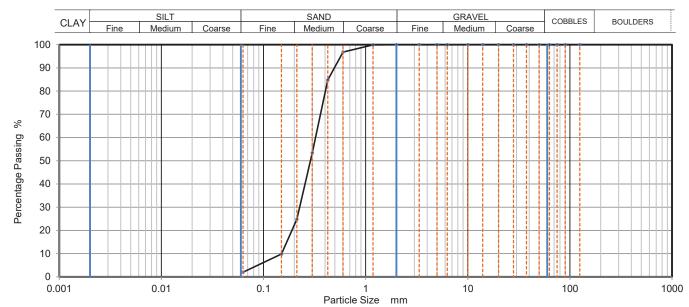
Stockley Park, UB11 1BD

Jomas Associates Ltd

Contact: Emma Hucker

Site Name: Woking Football Club, Kingfield Road, Woking Site Address: Woking Football Club, Kingfield Road, Woking

Test Results:


Client:

Laboratory Reference: 1175549
Hole No.: BH3
Sample Reference: Not Given
Sample Description: Grey SAND

Depth Top [m]: 8.00

Depth Base [m]: Not Given

Sample Type: B

		11 0 ::		
Siev	ing	Sedime	ntation	
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	100			
75	100			
63	100			
50	100			
37.5	100			
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	100			
0.6	97			
0.425	85			
0.3	53			
0.212	25			
0.15	10			
0.063	3			

Dry Mass of sample [g]:

Sample Proportions	% dry mass					
Very coarse	0.00					
Gravel	0.00					
Sand	97.10					
Fines <0.063mm	2.90					

499

Grading Analysis		
D100	mm	2
D60	mm	0.323
D30	mm	0.226
D10	mm	0.151
Uniformity Coefficient		2.1
Curvature Coefficient		1

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 26/03/2019

Signed:

Darren Berrill

Geotechnical General Manager

GF 100.10

and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

It may not be reproduced other than in full without the prior written approval of the issuing laboratory, is included within the report are representative of the samples submitted for analysis, is issue carried out at 12 Analytical United, ut. Pionierow 39, 41-711 Ruds Staska, Poland.*

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Emma Hucker

Woking Football Club, Kingfield Road, Woking Site Name: Woking Football Club, Kingfield Road, Woking Site Address:

Client Reference: JJ1460 Job Number: 19-32609 Date Sampled: 06/03/2019

Date Received: 21/02/2019 Date Tested: 18/03/2019

Sampled By: Not Given

Test Results:

Laboratory Reference: 1175550 Hole No.: BH4 Sample Reference: Not Given

Sample Description: Brownish grey gravelly clayey SAND

Depth Top [m]: 1.20 Depth Base [m]: Not Given

Sample Type: B

	CI	^_	SILT			SAND		GRAVEL			COBBLES	BOULDERS
		-AY Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CODDLLO	BOOLDERS
	100				·							
	100											
	90 -											
	80											
	70											
% 6	60											
Percentage Passing						/ /						
	50											
age	40											
cent	30											
Per												
	20											
	10											
	0 📙										1111111	
	0.001		0.01		0.1		1		10		100	1000
						Parti	cle Size n	nm				

Siev	ing	Sedimentation					
Particle Size mm	% Passing	Particle Size mm	% Passing				
125	100						
90	100						
75	100						
63	100						
50	100						
37.5	100						
28	98						
20	95						
14	93						
10	90						
6.3	87						
5	85						
3.35	84						
2	82						
1.18	79						
0.6	75						
0.425	70	1					
0.3	57						
0.212	41	1					
0.15	28	1					
0.063	17	7					

Dry Mass of sample [g]:

1958

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	18.20
Sand	64.40
Fines <0.063mm	17.40

Grading Analysis		
D100	mm	37.5
D60	mm	0.327
D30	mm	0.158
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Approved: Dariusz Piotrowski PL Geotechnical Laboratory Manager

Date Reported: 26/03/2019 and interpretations expressed herein are outside of the scope of the UKAS Accreditation. It may not be reproduced other than in full without the prior written approval of the issuing laborators is included within the report are representative of the samples submitted for analysis. is was carried out at 12 Analytical United, U. Pionierow 39, 41-711 Ruda Sladas, Poland."

Page 1 of 1

Darren Berrill

Geotechnical General Manager

GF 100.10

for and on behalf of i2 Analytical Ltd

Client:

TEST CERTIFICATE

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: JJ1460

Job Number: 19-32609

Date Sampled: 06/03/2019

Date Received: 21/02/2019 Date Tested: 18/03/2019

Sampled By: Not Given

Jomas Associates Ltd Client Address: Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Emma Hucker Contact:

Woking Football Club, Kingfield Road, Woking Site Name: Woking Football Club, Kingfield Road, Woking Site Address:

Test Results:

Laboratory Reference: 1175551 BH4 Hole No.: Sample Reference: Not Given

Sample Description: Brown slightly clayey SAND Depth Top [m]: 6.00

Depth Base [m]: Not Given

Sample Type: B

	CL AV	,	SILT			SAND			GRAVEL			BOULDERS
	CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOOLDERS
	100								-8	0-0-0-0		
	90											
						/						
	80											
	70											
Percentage Passing %												
	60								+++++		 	
В	50											
je j												
faç	40								+++++			
en												
<u>0</u>	30					,						
ď	00											
	20											
	10											
	10											
	0 —											
	0.001		0.01		0.1		1		10		100	1000
	0.001		0.01		0.1	Parti	cle Size n	nm	.0		.50	1000

Siev	ring	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	98	1	
0.3	70		
0.212	29		
0.15	14		
0.063	7]	

Dry Mass of sample [g]:

465

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	0.00
Sand	92.60
Fines <0.063mm	7.40

Grading Analysis		
D100	mm	2
D60	mm	0.276
D30	mm	0.214
D10	mm	0.0892
Uniformity Coefficient		3.1
Curvature Coefficient		1.9

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 26/03/2019 "Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuin the results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 12 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Staska, Poland."

Page 1 of 1

Darren Berrill

Geotechnical General Manager

GF 100.10

for and on behalf of i2 Analytical Ltd

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact:

Woking Football Club, Kingfield Road, Woking, Surrey Site Name: Site Address:

Emma Hucker

Woking Football Club, Kingfield Road, Woking, Surrey

Test Results:

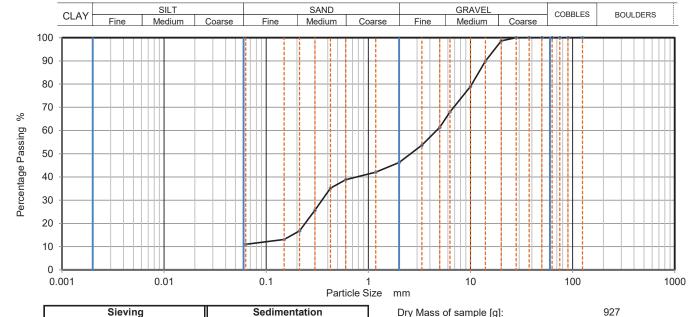
Sample Description:

Laboratory Reference: 1174599 WS1 Hole No.: Sample Reference:

Not Given Multicolour very sandy clayey GRAVEL i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: JJ1460

Job Number: 19-32463


Date Sampled: 05/03/2019

Date Received: 06/03/2019

Date Tested: 20/03/2019

Sampled By: Not Given Depth Top [m]: 2.00 Depth Base [m]: Not Given Sample Type: D

Siev	ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	99		
14	90		
10	79		
6.3	68		
5	61		
3.35	54		
2	46		
1.18	42		
0.6	39		
0.425	35	1	
0.3	26		
0.212	17	1	
0.15	13	1	
0.063	11	71	

Dry Mass of sample [g]:

Sample Proportions % dry mass 0.00 Very coarse 53.80 Gravel Sand 35.00 Fines < 0.063mm 11.20

Grading Analysis		
D100	mm	28
D60	mm	4.65
D30	mm	0.352
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved: Dariusz Piotrowski PL Geotechnical Laboratory Manager

Date Reported: 26/03/2019 nterpretations expressed herein are outside of the scope of the UKAS Accreditation, not be reproduced other than in full without the prior written approval of the issuin udded within the report are representative of the samples submitted for analysis, carried out at 12 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.*

Darren Berrill Geotechnical General Manager

GF 100.10

for and on behalf of i2 Analytical Ltd

Client:

TEST CERTIFICATE

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd

Client Address: Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Emma Hucker

Woking Football Club, Kingfield Road, Woking, Surrey Site Name: Woking Football Club, Kingfield Road, Woking, Surrey Site Address:

Test Results:

Laboratory Reference: 1174600 WS3 Hole No.: Not Given Sample Reference:

Sample Description: Brownish grey gravelly slightly clayey SAND

Depth Top [m]: 3.00 Depth Base [m]: Not Given

Client Reference: JJ1460

Job Number: 19-32463

Date Sampled: 05/03/2019

Date Received: 06/03/2019

Date Tested: 20/03/2019

Sampled By: Not Given

Sample Type: D

	OL AV		SILT			SAND		GRA	AVEL		COBBLES	BOULDERS
	CLAY	Fine M	ledium	Coarse	Fine	Medium	Coarse	Fine Med	lium Co	oarse	COBBLES	BOULDERS
100												
90	+											
80												
70												
50												
50 50 40 30												
30												
20												
10												
0	.001	0	.01		0.1	<u> </u>	1	1			100	10

Particle Size mm

Cian	du a	II Cadima	mtatia m
Siev	ring	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	1	
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	97		
14	95		
10	93		
6.3	92		
5	89		
3.35	87		
2	86		
1.18	85		
0.6	84		
0.425	83	1	
0.3	78		
0.212	58][
0.15	22][
0.063	8	1	

Dry Mass of sample [g]:

Sample Proportions % dry mass 0.00 Very coarse 14.30 Gravel Sand 77.90 Fines < 0.063mm

821

Grading Analysis		
D100	mm	28
D60	mm	0.22
D30	mm	0.162
D10	mm	0.0722
Uniformity Coefficient		3
Curvature Coefficient		1.7

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: Approved:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 26/03/2019

Page 1 of 1

Darren Berrill

Geotechnical General Manager

GF 100.10

pressed herein are outside of the scope of the UKAS Accreditation. t be reproduced other than in full without the prior written approval of the issui d within the report are representative of the samples submitted for analysis. Irried out at i2 Analytical Limited, ul. Plonierow 39, 41-711 Ruda Slaska, Poland.

for and on behalf of i2 Analytical Ltd

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Emma Hucker

Woking Football Club, Kingfield Road, Woking, Surrey Site Name: Woking Football Club, Kingfield Road, Woking, Surrey Site Address:

Test Results: Laboratory Reference: 1174601

Client Reference: JJ1460 Job Number: 19-32463 Date Sampled: 05/03/2019 Date Received: 06/03/2019 Date Tested: 20/03/2019

Sampled By: Not Given

Depth Top [m]: 2.00

Sample Type: D

Depth Base [m]: Not Given

WS5 Hole No.: Not Given Sample Reference:

Sample Description: Multicolour slightly clayey sandy GRAVEL

	-	CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS
		CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLEG	BOOLDERS
	100	1				<u> </u>	1: 1 1 1			11 11 1			
	90												
	80												
	00												
. 0	70												
%	60												
sing	00												
ass	50												
Je F													
ıtaç	40												
Percentage Passing	30												
Per	00												
_	20												
	4.0												
	10												
	0												
		001		0.01		0.1		1		10		100	1000
							Parti	cle Size n	nm				

Siev	ing	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100				
90	100				
75	100				
63	100				
50	100				
37.5	100				
28	96				
20	82				
14	74				
10	65				
6.3	56				
5	51				
3.35	45				
2	40				
1.18	36				
0.6	33				
0.425	31				
0.3	26				
0.212	21				
0.15	15				
0.063	10	71			

Dry Mass of sample [g]:

Fines < 0.063mm

Sample Proportions % dry mass 0.00 Very coarse 60.10 Gravel Sand 30.00

984

9.90

Grading Analysis		
D100	mm	37.5
D60	mm	7.77
D30	mm	0.403
D10	mm	0.0643
Uniformity Coefficient		120
Curvature Coefficient		0.33

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Page 1 of 1

Approved: Dariusz Piotrowski PL Geotechnical Laboratory Manager **Date Reported:** 26/03/2019

Signed:

Darren Berrill Geotechnical General Manager

GF 100.10

nterpretations expressed herein are outside of the scope of the UKAS Accreditation, not be reproduced other than in full without the prior written approval of the issuing laborator ided within the report are representative of the samples submitted for analysis. scarried out at 12 Analytical Limited, ul. Plonierow 39, 41-711 Ruda Slaska, Poland.*

for and on behalf of i2 Analytical Ltd

TEST CERTIFICATE

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Job Number: 19-32463

Date Sampled: 05/03/2019

Date Received: 06/03/2019

Date Tested: 20/03/2019

Sampled By: Not Given

Client Reference: JJ1460

Jomas Associates Ltd Client: Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Emma Hucker

Woking Football Club, Kingfield Road, Woking, Surrey Site Name: Woking Football Club, Kingfield Road, Woking, Surrey Site Address:

Test Results:

0.001

Laboratory Reference: 1174602 WS6 Hole No.: Not Given Sample Reference:

Sample Description: Multicolour gravelly slightly clayey SAND

0.01

Depth Top [m]: 1.80 Depth Base [m]: Not Given

Sample Type: D

SILT SAND GRAVEL COBBLES CLAY BOULDERS Coarse Fine Medium Coarse Fine Medium Coarse Fine Medium 100 90 80 70 60 50 40 30 20 10

Particle Size

		n	
Siev	ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	97		
20	85		
14	83		
10	81		
6.3	79		
5	77		
3.35	75		
2	73		
1.18	71		
0.6	69		
0.425	63	1	
0.3	31		
0.212	12	7	
0.15	8	1	
0.063	6		

0.1

Dry Mass of sample [g]:

10

Sample Proportions % dry mass 0.00 Very coarse 26.90 Gravel Sand 67.40 Fines < 0.063mm

100

838

Grading Analysis		
D100	mm	37.5
D60	mm	0.411
D30	mm	0.297
D10	mm	0.184
Uniformity Coefficient		2.2
Curvature Coefficient		1.2

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager **Date Reported:** 26/03/2019

Signed:

Darren Berrill Geotechnical General Manager

GF 100.10

1000

rpretations expressed herein are outside of the scope of the UKAS Accreditation. the reproduced other than in full without the prior written approval of the issuin d within the report are representative of the samples submitted for analysis. arried out at 12 Analytical Limited, U. Pionierow 39, 41-711 Ruda Slaska, Poland."

for and on behalf of i2 Analytical Ltd

Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS Tested in Accordance with: BS 1377-2: 1990

Jomas Associates Ltd Client: Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Emma Hucker Contact:

Woking Football Club, Kingfield Road, Woking, Surrey Site Name: Woking Football Club, Kingfield Road, Woking, Surrey Site Address:

Client Reference: JJ1460

Job Number: 19-32463 Date Sampled: 05/03/2019 Date Received: 06/03/2019

Date Tested: 20/03/2019 Sampled By: Not Given

Test Results:

Laboratory Reference: 1174603 WS10 Hole No.: Sample Reference: Not Given

Sample Description: Brownish grey slightly clayey SAND

Depth Top [m]: 3.00 Depth Base [m]: Not Given Sample Type: D

	_	CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS
	_	CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CODDLLO	BOOLDERS
	100 -												
	90 -												
	80 -												
%	70 -												
	60 -												
Pass	50 -												
ntage	40 -												
Percentage Passing	30 -												
	20 -												
	10 -												
	0.0	001		0.01		0.1		1		10		100	1000
	0.0	JU 1		0.01		0.1	Part	ı icle Size n	nm	10		100	1000

Siev	/ing	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100				
90	100				
75	100				
63	100				
50	100				
37.5	100				
28	100				
20	100				
14	100				
10	100				
6.3	100				
5	100				
3.35	100				
2	100				
1.18	100				
0.6	100				
0.425	97				
0.3	69				
0.212	33]			
0.15	16]			
0.063	10	1			

Dry Mass of sample [g]:

366

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	0.00
Sand	90.30
Fines <0.063mm	9.70

Grading Analysis		
D100	mm	2
D60	mm	0.275
D30	mm	0.2
D10	mm	0.0656
Uniformity Coefficient		4.2
Curvature Coefficient		2.2

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 26/03/2019 "Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at IZ Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland." Signed:

Page 1 of 1

Darren Berrill

Geotechnical General Manager

GF 100.10

for and on behalf of i2 Analytical Ltd

APPENDIX 5 – SOIL GAS AND GROUNDWATER MONITORING RECORDS

Woking Football Club, Kingfield Road, GU22 9AA Geo-environmental and Geotechnical Assessment P1381J1460 - November 2019

Prepared by Jomas Associates Ltd On behalf of Woking Football Club

	GAS AN	ND GROUNDWATER MONITORIN	NG BOREHOLE R	RECORD	SHEET							
Site: Kingfield Road	Operative(s): JLW	Date: 14/03/2019	Time: 10:55		Round: 1		Page: 1					
	MONITORING EQUIPMENT											
Instrument Type	rated											
Analox	GA5000		G501805		30/01/2019							
PID	Phocheck tiger		T-106448		04/10/2018							
Dip Meter	GeoTech											
		MONITORING CO	NDITIONS									
Weather Conditions: Cloudy/S	Sunny	Ground Conditions: Damp/Wet	Temp		Temperature: 12°C							
Barometric Pressure (mbar):	1000	Barometric Pressure Trend (24hr):	Ambien	t Concentration:	0.0%CH ₄ ,	0.1%CO ₂ ,	21.1%O ₂					

	MONITORING RESULTS													
Monitoring	F	low	Atmospheric	CH ₄	CH ₄ %	20. %	• •	VOC (ppm)		ppm) H ₂ S		Depth to	Depth to	Depth to Base of
Point Location	Peak	Steady	Pressure (mbar)	%	LEL	CO ₂ %	O ₂ %	Peak	Steady	(ppm)	(ppm)	product (mbgl)	water (mbgl)	well (mbgl)
WS2	0.0	0.0	1000	0.0	/	4.4	12.6	1	/	0	0	/	2.45	3.06
WS7	0.0	0.0	1002	0.0	1	0.3	16.9	1	/	0	0	/	1.81	3.07
WS10	0.0	0.0	1001	0.4	1	5.7	1.5	/	/	0	3	/	1.69	2.94
BH1	0.0	0.0	1001	0.0	1	3.2	13.6	/	/	0	0	/	1.75	4.97
BH2	+0.2	+0.2	1001	0.0	1	3.3	6.5	/	/	0	0	/	1.82	3.15
ВН3	-18.6	-3.7	1001	0.0	1	0.1	19.6	1	/	1	>>>>	/	1.21	4.54
HBH2	0.0	0.0	1001	0.0	1	0.2	15.4	/	/	0	0	/	2.06	4.50
HBH4	0.0	0.0	1001	0.0	1	2.5	13.5	1	/	0	0	1	1.71	5.89

No PID available on site so VOC readings were not taken.

	GAS A	ND GROUNDWATER MONITOR	ING BOREHOLE F	RECORD	SHEET				
Site: Kingfield Road	Operative(s): JLW	Date: 21/03/2019	Time: 13:32		Round: 2		Page: 1		
		MONITORING E	QUIPMENT						
Instrument Type Instrument Make Serial No. Date Last Calibrated									
Analox	GA5000		G501805		30/01/2019				
PID	Phocheck tiger		T-106448		04/10/2018				
Dip Meter	GeoTech								
		MONITORING C	ONDITIONS						
Weather Conditions: Overcas	st	Ground Conditions: Damp		Tempera	emperature: 12°C				
Barometric Pressure (mbar):	1031	Barometric Pressure Trend (24hr	Ambient Concentration: 0.0%CH ₄ , 0.1%				0.1%CO ₂ ,	20.8%O ₂	

						MONITO	ORING RES	SULTS						
Monitoring	Flow		Atmospheric	CH ₄	CH ₄ %	22.04	•	VOC	(ppm)	(ppm) H ₂ S		Depth to	Depth to	Depth to Base of
Point Location	Peak	Steady	Pressure (mbar)	%	LEL	CO ₂ %	O ₂ %	Peak	Steady	(ppm)	CO (ppm)	product (mbgl)	water (mbgl)	well (mbgl)
WS2	+0.1	+0.1	1031	0.0	1	3.0	15.9	0.4	0.4	0	0	/	2.46	3.06
WS7	+0.1	+0.1	1031	0.0	1	0.7	18.9	1.0	1.0	0	0	1	2.04	3.05
WS10	+0.1	+0.1	1031	0.0	1	2.0	14.2	0.5	0.5	0	5	/	1.81	2.95
BH1	+0.1	+0.1	1031	0.0	1	3.1	14.1	0.6	0.6	0	0	1	1.81	4.94
BH2	+0.2	+0.2	1032	0.0	1	3.7	6.4	3.8	3.8	0	1	1	1.92	3.12
BH3	-3.8	-3.8	1031	0.0	1	0.0	19.8	2.3	2.3	0	481	1	1.21	4.52
HBH2	0.0	0.0	1032	1.3	1	2.4	11.5	0.4	0.3	0	5	1	2.13	4.48
НВН4	0.0	0.0	1031	0.0	/	1.6	18.9	0.4	0.3	0	0	/	1.88	5.89

	GAS AN	ID GROUNDWATER MONITORIN	NG BOREHOLE R	RECORD	SHEET							
Site: Kingfield Road	Operative(s): JLW	Date: 28/03/2019	Time: 10:21		Round: 3		Page: 1					
	MONITORING EQUIPMENT											
Instrument Type	Date Last Calibi	ated										
Analox	GA5000		G501805		30/01/2019							
PID	Phocheck tiger		T-106448		04/10/2018							
Dip Meter	GeoTech											
		MONITORING CO	NDITIONS									
Weather Conditions: Cloudy		Ground Conditions: Moist		Tempera	ature: 12°C							
Barometric Pressure (mbar):	1035	Barometric Pressure Trend (24hr): Falling			t Concentration:	0.0%CH ₄ ,	0.1%CO ₂ ,	20.5%O ₂				

	MONITORING RESULTS													
Monitoring	F	low	Atmospheric	CH ₄	CH ₄ %	20.04	.	VOC (ppm)		ppm) H ₂ S		Depth to	Depth to	Depth to Base of
Point Location	Peak	Steady	Pressure (mbar)	%	LEL	CO ₂ %	O ₂ %	Peak	Steady	(ppm)	(ppm)	product (mbgl)	water (mbgl)	well (mbgl)
WS2	0.0	0.0	1035	0.0	/	4.4	14.1	0	0	0	0	/	2.55	3.06
WS7	0.0	0.0	1035	0.0	/	0.8	19.2	0	0	0	0	/	2.21	3.06
WS10	0.0	0.0	1035	0.0	/	2.3	14.7	0	0	0	0	/	1.93	2.90
BH1	0.0	0.0	1035	0.0	/	4.0	15.3	0	0	0	0	/	2.07	4.92
BH2	0.0	0.0	1035	0.0	/	4.3	4.6	2	2	0	0	/	2.07	3.13
ВН3	-0.1	0.0	1035	0.0	/	0.1	19.4	2	2	0	20	/	1.49	4.52
HBH2	-0.1	-0.1	1035	1.3	1	5.5	15.6	0	0	0	3	/	2.17	4.37
HBH4	0.0	0.0	1035	0.0	1	1.4	19.2	0	0	0	0	1	2.02	5.89

^{*}Flow carried out before gas monitoring in all boreholes.

	GAS AN	ID GROUNDWATER MONITORIN	IG BOREHOLE F	RECORD	SHEET							
Site: Kingfield Road	Operative(s): JPB	Date : 02/04/2019	Time: 10:03		Round: 4		Page: 1					
	MONITORING EQUIPMENT											
Instrument Type Instrument Make Serial No. Date Last Calibrated												
Analox	GA5000		G501805		30/01/2019							
PID	Phocheck tiger		T-106448		04/10/2018							
Dip Meter	GeoTech											
		MONITORING CO	NDITIONS									
Weather Conditions: Overcast	i	Ground Conditions: Dry		Tempera	ature: 7°C							
Barometric Pressure (mbar):	1002	Barometric Pressure Trend (24hr):	Ambient	t Concentration:	0.0%CH ₄ ,	0.1%CO ₂ ,	21.0%O ₂					

	MONITORING RESULTS													
Monitoring	Flow		Atmospheric	CH ₄	CH ₄ %	00.00	0.0/	VOC (ppm)		H₂S	СО	Depth to	Depth to	Depth to Base of
Point Location	Peak	Steady	Pressure (mbar)	%	LEL	CO ₂ %	O ₂ %	Peak	Steady	(ppm)	(ppm)	product (mbgl)	t water	well (mbgl)
WS2	0.0	0.0	1002	0.0	/	7.2	8.3	0	0	0	0	/	2.59	3.04
WS7	0.0	0.0	1003	0.0	/	1.5	17.0	0	0	0	0	/	2.28	3.04
WS10	0.0	0.0	1003	0.0	/	4.5	5.9	0	0	0	0	/	1.95	2.87
BH1	0.0	0.0	1003	0.0	/	4.5	15.3	0	0	0	0	/	2.03	4.87
BH2	0.0	0.0	1002	0.0	/	4.9	3.5	1	1	0	0	/	2.07	3.10
ВН3														
HBH2	+0.9	+0.9	1003	0.9	/	5.7	5.5	0	0	0	1	/	2.18	4.31
HBH4	0.0	0.0	1003	0.0	1	2.0	17.9	0	0	0	0	/	2.08	5.90

^{*}Flow carried out before gas monitoring in boreholes except WS2 and BH2

APPENDIX 6 – CALIFORNIA BEARING RATIO TEST RESULTS

Depth Nr Cumulative

53

55

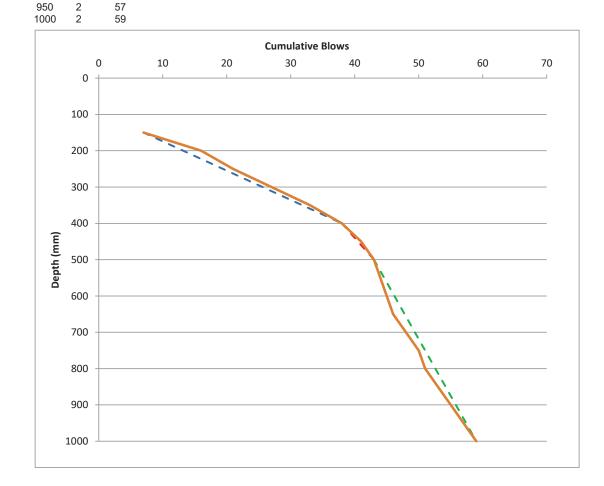
850

900

2

WE LISTEN, WE PLAN, WE DELIVER

Date: 04/04/2019


to coarse, angular to rounded flint, asphalt, concrete, brick and occasional ceramic fragments.

CBR Calculation

Kingsfield Road, Woking Jomas Job: Test Location: CBR1 Jomas Job No.: P1381J1460 Date of test: 05/03/2019

Calculating Engineer: CLP

(mm) 50	Blow	blows		Approved by PS		Date:	04/04/2019			
100									_	
150	7	7	Test	Initial Depth	Final Depth	mm /	CBR*	E (MPa)		
200	9	16	Test	(mm)	(mm)	blow	(%)	(IVIPa)		
250	5	21	CBR1-Test 1	150	400	8.1	33.2	165.59	1	
300	6	27	CBR1-Test 2	400	500	20.0	12.7	89.53	1	
350	6	33	CBR1-Test 3	500	1000	31.3	7.9	66.07	1	
400	5	38]	
450	3	41	* CBR calculat	ted using meth	od outlined in	1AN 73/06	5		2	
500	2	43								
550	1	44	Test Notes:							
600	1	45	Test carried or	ut using a Perth	n Probe type	dynamic co	one probe	consistir	ng of a 8 kg free fa	
650	1	46	hammer lifted	and dropped th	rough a heig	ht of 575m	ım .			
700	2	48	Colour of text	refers to the mo	odelled gradie	ent on grap	h below			
750	2	50	GL - 0.15m: Asphalt. (MADE GROUND)							
800	1	51	0 15-0 70m· B	lack slightly cla	vev sandv ar	avel Sand	is fine to	medium	Gravel consists of	

Depth Nr Cumulative

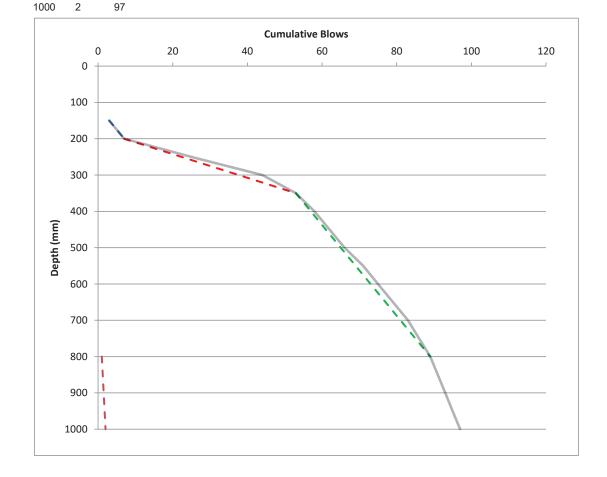
WE LISTEN, WE PLAN, WE DELIVER

04/04/2019

04/04/2010

Date:

CBR Calculation

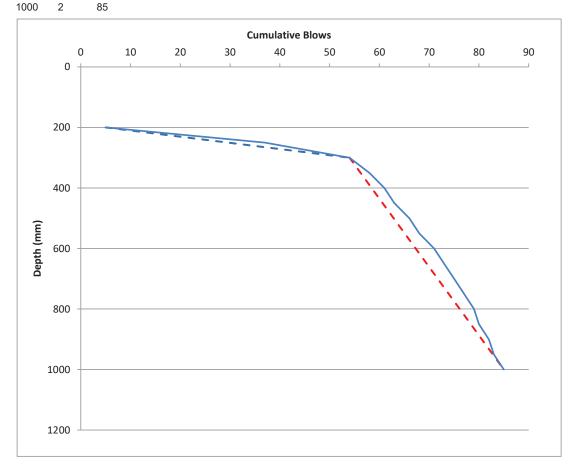

Kingsfield Road, Woking Jomas Job: Test Location: Jomas Job No.: P1381J1460 Date of test:

Calculating Engineer: CLP

111111)	DIOW	DIOWS		Approved by	1 3	Date.	04/04/2	019
50								
100								
150	3	3	Test	Initial Depth	Final Depth	mm /	CBR*	E (MPa)
200	4	7	Test	(mm)	(mm)	blow	(%)	c (IVIPa)
250	18	25	CBR5-Test 1	150	200	12.5	20.9	123.14
300	19	44	CBR5-Test 2	200	350	3.3	86.6	305.86
350	9	53	CBR5-Test 3	350	800	12.5	20.9	123.14
400	_	FO	CDDE Toot 4	900	1000	25.0	10.1	77 22

^{*} CBR calculated using method outlined in IAN 73/06

450 62 500 550 Test Notes: 5 71 600 Test carried out using a Perth Probe type dynamic cone probe consisting of a 8 kg free fall 75 hammer lifted and dropped through a height of 575mm 700 83 Colour of text refers to the modelled gradient on graph below 750 GL-0.30m: Grass over brown clayey gravelly sand with occasional rootlets. Sand is fine. 800 3 Gravel consists of fine to coarse, angular to rounded flint, brick and concrete. (MADE GROND 850 - Topsoil). 900 95 950 2



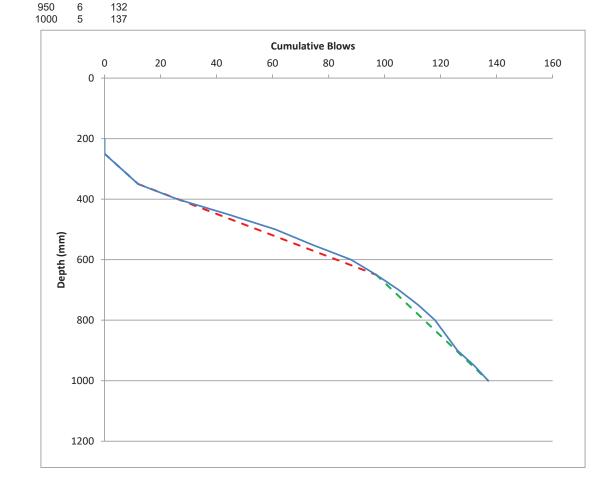
WE LISTEN, WE PLAN, WE DELIVER

CBR Calculation

Kingsfield Road, Woking Jomas Job: Test Location: CBR6 Jomas Job No.: P1381J1460 Date of test: 05/03/2019

Depth (mm) 50 100	Nr Blow	Cumulative blows	Calculati	ing Engineer: Approved by		Date: Date:	04/04/2 04/04/2		
150			Test	Initial Depth	Final Depth	mm /	CBR*	E (MPa)	
200	5	5	Test	(mm)	(mm)	blow	(%)	E (IVIFa)	
250	32	37	CBR6-Test 1	200	300	2.0	142.1	419.93	
300	17	54	CBR6-Test 2	300	1000	22.6	11.2	82.61	
350	4	58							
400	3	61							
450	2	63	* CBR calculat	ed using metho	od outlined in	IAN 73/06			
500	3	66							
550	2	68	Test Notes:						
600	3	71	Test carried ou	it using a Perth	Probe type of	dynamic co	ne probe	consistin	g of a 8 kg free fall
650	2	73	hammer lifted a	and dropped th	rough a heigh	ht of 575mi	m		
700	2	75	Colour of text r	efers to the mo	odelled gradie	ent on grap	h below		
750	2	77	GL - 0.10m: A	sphalt. (MADE	GROUND)				
800	2	79	0.10-0.50m: Re	ed to grey sand	dy gravel. Śar	nd is mediu	ım. Grav	el consists	s of fine to coarse,
850	1	80	angular to rour	nded flint, brick	, concrete an	d asphalt f	ragments	. (MADE	GROUND).
900	2	82		,	•	•	.,	•	,
950	1	83							
1000	2	95							

WE LISTEN, WE PLAN, WE DELIVER


CBR Calculation

Kingsfield Road, Woking Jomas Job: Test Location: CBR8 Jomas Job No.: P1381J1460 Date of test:

Depth (mm)	Nr Blow	Cumulative blows	Calculat	ing Engineer: Approved by		Date: Date:	04/04/2 04/04/2	
50								
100								
150		_	Test	Initial Depth	Final Depth	mm /	CBR*	E (M

100								
150			Test	Initial Depth	Final Depth	mm /	CBR*	E (MPa)
200	0	0	1621	(mm)	(mm)	blow	(%)	⊏ (IVIFa)
250	0	0	CBR8-Test 1	250	350	8.3	32.1	162.06
300	6	6	CBR8-Test 2	350	650	3.5	79.6	289.8
350	6	12	CBR8-Test 3	650	1000	8.8	30.5	156.84
400	14	26						
450	18	44	* CBR calculat	ed using metho	od outlined in	IAN 73/06		
500	17	61						

550 13 **Test Notes:** 74 600 14 88 Test carried out using a Perth Probe type dynamic cone probe consisting of a 8 kg free fall 650 97 hammer lifted and dropped through a height of 575mm 700 105 Colour of text refers to the modelled gradient on graph below 750 112 GL-0.10m: Asphalt. (MADE GROUND) 800 118 0.10-0.40m: Red to grey slightly clayey sandy gravel. Sand is medium. Gravel consists of fine 850 to coarse, angular to sub-rounded flint, brick, concrete and asphalt fragments. (MADE 126 900

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

JOMAS ASSOCIATES LTD

6-9 The Square,

Stockley Park,

Uxbridge,

UB11 1FW

CONTACT US

Website: www.jomasassociates.com

Tel: 0843-289-2187

Fax: 0872-115-4505

Email: info@jomasassociates.com