FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

Proposed Leisure Centre and Residential Development

Land West of Egley Road Woking GU22 0NJ

Prepared for: Woking Football Club

22nd November 2019

Project Number: RMA-C1947

environmental planning consultancy

THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY

RMA Environmental Limited, Suite 4, Swallow Court, Devonshire Gate, Tiverton EX16 7EJ t 01884 842740 e enquiries@rma-environmental.co.uk w www.rma-environmental.co.uk

Registered in England No. 6915388. Registered Office: 2 Chartfield House, Castle Street, Taunton TA1 4AS

Document Production Record:

Report Number:	RMA-RC1947
Prepared by:	Kieran Renton/Melissa Seymour
Checked by:	Rob Murdock
Approved by:	Rob Murdock

Document Revision Record:

Issue Number	Date	Revision Details
1	11 th September 2019	Client Issue (Draft)
2	22 nd October 2019	Revised Issue
3	8 th November 2019	Revised Issue
4	8 th November 2019	Revised Issue
5	20 th November 2019	Revised Issue
6	22 nd November 2019	Final Issue

RMA Environmental Limited has prepared this report in accordance with the instructions of the above named client for their sole and specific use. Any third parties who may use the information contained herein do so at their own risk.

CONTENTS

1 INTRO	DUCTION1
Site Loc Propose Require	bund
2 BASEL	INE ENVIRONMENTAL CONDITIONS
Hydrolo	aphy
3 EXTER	NAL FLOOD RISK
Historic Surface Safe Ac	g Mechanisms
4 DRAIN	AGE ASSESSMENT7
Summa Designir Long Te	ry
5 CONCL	-USIONS

FIGURES

Figure 1.1:	Site Location Plan
Figure 3.1:	EA Flood Map for Planning
Figure 3.2:	EA Surface Water Flood Risk Mapping
Figure 4.1:	Surface Water Exceedance Flow Route
0	

APPENDICES

Appendix A:	Proposed Development Layout
Appendix B:	Topographical Survey
Appendix C:	Drainage Strategy
Appendix D:	Thames Water Sewer Records

1 INTRODUCTION

Background

- 1.1 RMA Environmental Limited has been commissioned by Woking Football Club to prepare a Flood Risk Assessment (FRA) to support a full planning application for a proposed leisure centre and residential development on land at to the west of Egley Road in Woking, GU22 0NJ.
- 1.2 This FRA has been prepared in accordance with the National Planning Policy Framework (NPPF), associated Planning Practice Guidance (PPG) and Environment Agency (EA) standing advice on flood risk for new development.

Site Location and Land Use

- 1.3 The site is largely undeveloped land although, a small warehouse and parking area/access track are located in the north-eastern part of the site. The site extends to an area of approximately 4.1 hectares (ha) and is located at National Grid Reference SU 99410 56401 (refer to Figure 1.1).
- 1.4 The site is bordered by the following land uses:
 - Hoe Valley School which comprises of an athletics club and car park form the northern boundary of the site;
 - a railway forms the western site boundary;
 - a wooded area is located along the south-eastern boundary of the site and beyond this is further residential development and Hook Hill Lane;
 - a garden centre and industrial yard are located directly east of the site; and
 - the surrounding area is mostly urbanised with a mixture of commercial and residential buildings, with some areas of greenfield land.
- 1.5 Access to the site is currently via Egley Road to the east of the site. Further details on site topography, geology and hydrology are set out in Section 2.

Proposed Development

1.6 The Proposed Development includes the redevelopment of the site, following the demolition of the existing building, to provide a health club building (Class D2) incorporating an external swimming pool and tennis/sports courts, the provision of 36 dwelling houses (Class C3) up to a maximum of 3 storeys in height, associated landscaping and car parking and new vehicular access from an existing road serving Hoe Valley School (refer to the proposed development layout at Appendix A).

Requirements for a Flood Risk Assessment

- 1.7 The requirements for FRA are provided in the NPPF and associated PPG. Paragraph 163 of the NPPF (2018) requires that a site-specific FRA should be submitted with planning applications for all sites greater than 1 ha in Flood Zone 1; for sites of any size within Flood Zones 2 or 3; in an area within Flood Zone 1 which has critical drainage problems; in an area within Flood Zone 1 which is identified in a strategic flood risk assessment as being at increased flood risk in the future; or an area within Flood Zone 1 that may be subject to other sources of flooding, where its development would introduce a more vulnerable use.
- 1.8 Flood Zone 1 is defined as land with little or no flood risk (an annual exceedance probability [AEP] of flooding of less than 0.1%); Flood Zone 2 is defined as having a medium flood risk (an AEP of between 0.1% and 0.5% for tidal areas or 0.1% and 1.0% for rivers); and Flood Zone 3 is defined as high risk (with an AEP of greater than 0.5% for tidal areas or greater than 1.0% for rivers).
- 1.9 FRAs should describe and assess all flood risks (from rivers, the sea, surface water, reservoirs, sewers and groundwater) to and from the development and demonstrate how they will be managed, including an evaluation of climate change effects.

Consultation

- 1.10 Consultation has been undertaken with the following consultees and further details of these consultations are included within Section 3 and 4 of this FRA:
 - direct consultation in the form of a meeting and email correspondence has been undertaken with Katherine Waters at Woking Borough Council (who are acting at the Lead Local Flood Authority) to the scope of the surface water drainage strategy; and
 - a pre-development enquiry has been undertaken with Thames Water to determine the location of sewers within the site and surrounding are and if there is sufficient capacity within the local foul sewerage system to supply the development.

2 BASELINE ENVIRONMENTAL CONDITIONS

Topography

2.1 A topographical survey is included within Appendix B of this report. This identifies that the site slopes in an easterly direction; the highest level is approximately 32.96 metres Above Ordnance Datum (mAOD) in the north-western corner of the site, falling to approximately 27.94 mAOD in the north-eastern corner of the site.

Hydrology

- 2.2 There is one 'main river'¹ within a 500 m radius of the site. This is the Hoe Stream which is located approximately 250 m east of the site and flows in a north-easterly direction.
- 2.3 A further stream is located approximately 110 m north of the site along Egley Road. It was identified during the site visit that this stream is culverted beneath Egley Road and into the Hoe Stream to the north-east of the site.
- 2.4 There are no other significant watercourses or water bodies within the surrounding area.

Geology and Hydrogeology

- 2.5 As reported on the British Geological Survey (BGS) online Geology of Britain Viewer, the site is not underlain by any superficial geology; however, it is underlain by the bedrock geology of the Bagshot formation, comprising sand.
- 2.6 The EA classify the bedrock geology as a Secondary A Aquifer; these are defined as "permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers."
- 2.7 The site is not located within a groundwater Source Protection Zone (SPZ).
- 2.8 A Geo-Environmental and Geotechnical Assessment (Ground Investigation) Report has been prepared for the site and is submitted as a separate report for this application. This states that during return monitoring, groundwater was reported at depths of between 1.78 m and 3.94 m below ground level (bgl).

¹ Main Rivers described by the EA as the following "usually larger rivers and streams"

3 EXTERNAL FLOOD RISK

Flooding Mechanisms

- 3.1 The EA's flood map for planning (refer to Figure 3.1) indicates that the site lies entirely within Flood Zone 1 (low risk). Land within Flood Zone 2 (medium risk) is located approximately 110 m east of the site at an elevation approximately 1.9 m lower than the site. Land within Flood Zone 3 (high risk) is located approximately 190 m east of the site at an elevation approximately 190 m east of the site at an elevation approximately 190 m east of the site at an elevation approximately 3 m lower than the site. It is therefore concluded that the site will remain within Flood Zone 1 for its operational lifetime, with the added effects of climate change.
- 3.2 The EA's surface water flood risk map identifies that the majority of the site has a very low risk of surface water flooding (each year, this area has a chance of flooding of less than 1 in 1000 (0.1%)). There is a small area of low surface water flood risk located within the north of the site and an area of medium and high surface water flood risk located within the south-western part of the site. This is discussed further below.
- 3.3 When reviewing the Woking Borough Council Strategic Flood Risk Assessment (SFRA) Volume 2 Technical Report (Nov 2015), it identifies that the site is located within an area of "*limited potential for groundwater flooding to occur*". It is therefore considered that the site has a low risk of groundwater flooding and this is considered a risk to the proposed development.
- 3.4 Woking Borough Council's SFRA identifies that the site lies within a postcode area with six records of sewer flooding. No further details are given on the location of these records and, given the size and location of the site, it is not considered to be at significant risk of flooding from this source.
- 3.5 A review of the SFRA and EA flood maps, has identified that there are no other significant sources of flooding at the site, i.e. from reservoirs.

Historic Flooding

- 3.6 The Woking Borough Council SFRA has been reviewed to establish any records of flooding at or in close proximity to the application site. No records of flooding were found for the site or the immediate surrounding area.
- 3.7 The EA's historic flood map identifies no records of flooding for the site or its surroundings.

Surface Water Flooding

3.8 The EA's risk of flooding from surface water map shows that the majority of the site has a very low risk of surface water flooding. Very low surface water flood risk is defined where *"each year, this area has a chance of flooding of less than 1 in 1000 (0.1%)*".

- 3.9 There is an area of medium and high surface water flood risk in the south-western part of the site (refer to Figure 3.2). Medium surface water flood risk is defined where "each year, this area has a chance of flooding of between 1 in 100 (1%) and 1 in 30 (3.3%)". High surface water flood risk is defined where "each year, this area has a chance of flooding of greater than 1 in 30 (3.3%)".
- 3.10 During the medium risk scenario, a small isolated area of surface water flooding is located in the south-west of the site which has an estimated depth of 150 to 600 mm.
- 3.11 During the high risk scenario, a very small isolated area of surface water flooding is located in the south-west of the site which has an estimated depth of 150 to 600 mm.
- 3.12 The EA's flood mapping indicates that this area of medium to high surface water flood risk in the south-western part of the site is limited in size and does not form part of any surface water flow paths (i.e. it originates within the site boundary). The extents of medium/high surface water flood risk are located in an existing topographical depression on the site and is therefore ponded water. Post development, it is considered that any ponding of surface water in extreme events will be re-distributed to the new low points within the site (i.e. areas of open space and roads) and managed within the surface water drainage strategy.
- 3.13 The EA's surface water flood risk mapping shows what "*happens when rainwater does not drain away through the normal drainage systems or soak into the ground but lies on or flows over the ground instead.*" It is noted that this type of flooding is difficult to predict and was based on the best information available to the EA regarding ground levels and drainage.
- 3.14 The risk of surface water flooding originating within the site would be reduced (or eliminated) through the implementation of the proposed drainage strategy. Therefore, it is considered unlikely that surface water flooding would adversely affect the site.

Safe Access/Egress

- 3.15 Access/egress to the site would not be affected by fluvial or tidal flooding; the site is located entirely within Flood Zone 1 (low risk) and safe access/egress via Egley Road along the north-eastern boundary of the site is readily achievable.
- 3.16 There are small areas of low surface water flood risk along Egley Road adjacent to the site; however, during a low risk (0.1% AEP) surface water event, the flood depth is estimated to be less than 300 mm. When the estimated flood depths are less than 300 mm, it is considered that safe access/egress from the site would still be possible. Should surface water flood depths exceed this level and it is not possible to exit the property safely, occupants would be advised to stay within the property and wait for surface water to recede.

Land Use Vulnerability

3.17 Table 2 of the NPPF PPG sets out a schedule of land uses based on their vulnerability or sensitivity to flooding. As set out in Table 2, the proposed residential development is classified as 'more vulnerable' and the leisure centre development is classified as a land use that is 'less vulnerable' to flooding. Referring to Table 3 of the PPG, all land uses are considered appropriate within Flood Zone 1.

3.18 Therefore, on the basis of land use vulnerability, the development should be deemed appropriate in planning policy terms of its proposed location.

4 DRAINAGE ASSESSMENT

Introduction

- 4.1 This drainage strategy has been prepared in accordance with Defra's *"Non-statutory technical standards for sustainable drainage systems"* (March 2015) to ensure that the proposed development does not increase flood risk to the site or elsewhere and, where practicable, reduces flood risk over the lifetime of the development.
- 4.2 Peak rainfall intensity is expected to increase as a result of climate change and, as such, storage calculations have included a 40% increase in rainfall depths in accordance with current climate change guidance.

Summary

- 4.3 The site comprises of mostly green open space, a small warehouse is located in the northeastern part of the site. There is limited information on the drainage arrangements for the existing site, however, the topographical survey (refer to Appendix B) shows a number of surface water sewers within the site and indicated that these are likely to be connected to the exiting public surface water sewer in the adjacent access road to Hoe Valley School.
- 4.4 BRE365 compliant infiltration testing has been undertaken at the site and the results are included as Appendix C of this report. This testing confirmed that there is low potential for infiltration across most of the site. Therefore, it is proposed to maintain the existing connections and discharge to the public surface water sewer to the north of the site.
- 4.5 Table 4.1 provides an overview of the feasibility of a range of SuDS techniques which are considered in accordance with the SuDS hierarchy in order to identify the most appropriate for the proposed development.

Technique	Comments	Feasibility		Utilised
Green roofs	Requires flat or minimal slope roofs. Limited value for runoff attenuation in comparison with other techniques.	Feasible	x	Not proposed due to commercial reasons.
Soakaways and infiltration trenches	Require infiltration rates of 1 x 10 ⁻⁶ m/s or greater. Shallow soakaways or infiltration trenches would be required where groundwater is shallow (i.e. less than 2.0 mbgl).	Not Feasible	x	Soakaway tests have been completed and infiltration rates and groundwater depth are not suitable for soakaways.
Infiltration basins / swales	Are widely applicable for attenuation and treatment of surface runoff by infiltration into the ground. Require slope of no more than 4-10% and can act as a substitute for soakaways where groundwater is shallow.	Not Feasible	x	Soakaway tests have been completed and infiltration rates and groundwater depth are not suitable for soakaways.

Table 4.1: Type and Feasibility of SuDS

Technique	Comments	Feasibility		Utilised
Bio- retention – landscaped infiltration areas	Primarily used to remove pollutants from runoff and due to their shallow nature are not as effective at runoff attenuation as other SUDS techniques.	Feasible	~	Runoff from surfaces will be diverted to tree pits and rain gardens with excess runoff being diverted to the positive drainage system (where possible).
Permeable pavement	Ideally requires a level site and favourable underlying ground conditions. May be suitable in areas of relatively flat topography. Can be linked with geocellular storage or a porous sub-base.	Feasible	~	Lined permeable paving will be used for non-adopted areas, with geocellular storage beneath, where necessary.
Non- infiltration swales	Used in the same way as carrier ditches or storage bunds. Shallow swales can be used for conveyance and/or storage.	Not Feasible	x	Insufficient space is available within the layout as a result of economic constraints (refer to Para 4.6)
Filter drains	These are normally used adjacent to areas of car parking or roads and convey runoff via flow through an engineered substrate.	Feasible	x	Not proposed.
Balancing ponds or attenuation basins	These are permanent ponds or basins that provide storage. These are appropriate for most sites but require suitable space.	Not Feasible	x	Insufficient space is available within the layout as a result of economic constraints (refer to Para 4.6)
Geo- cellular storage	Geo-cellular storage or similar sub- base medium beneath car parking areas and/or other areas of hardstanding and/or other forms of underground attenuation.	Feasible	~	Geocellular storage is to be provided under car parking and roads.

- 4.6 The site at Egley Road has been designed to enable the relocation of the David Lloyd Leisure Centre from Kingfield Road. In order to enable the relocation of the leisure centre and make it financially sustainable, the site must incorporate a certain quantum of residential development. Given the economic and technical constraints on this site (approximately 25% of the site comprises of protected trees), insufficient space is available within the layout for above ground SuDS features, such as swales and ponds. Soakaway tests have been completed and infiltration rates and groundwater depths are not suitable for soakaways, however, lined permeable paving will be used for non-adopted areas.
- 4.7 The rate of discharge to the public sewer will be controlled by a hydro-brake. Refer to drawings SK100/A and SK101/A within Appendix C of this report.
- 4.8 The drainage arrangement for the proposed development will limit runoff for all events up to and including the 100 year plus 40% climate change to Qbar. This is likely to be a betterment on existing rates and a betterment on equivalent greenfield rates for the site.

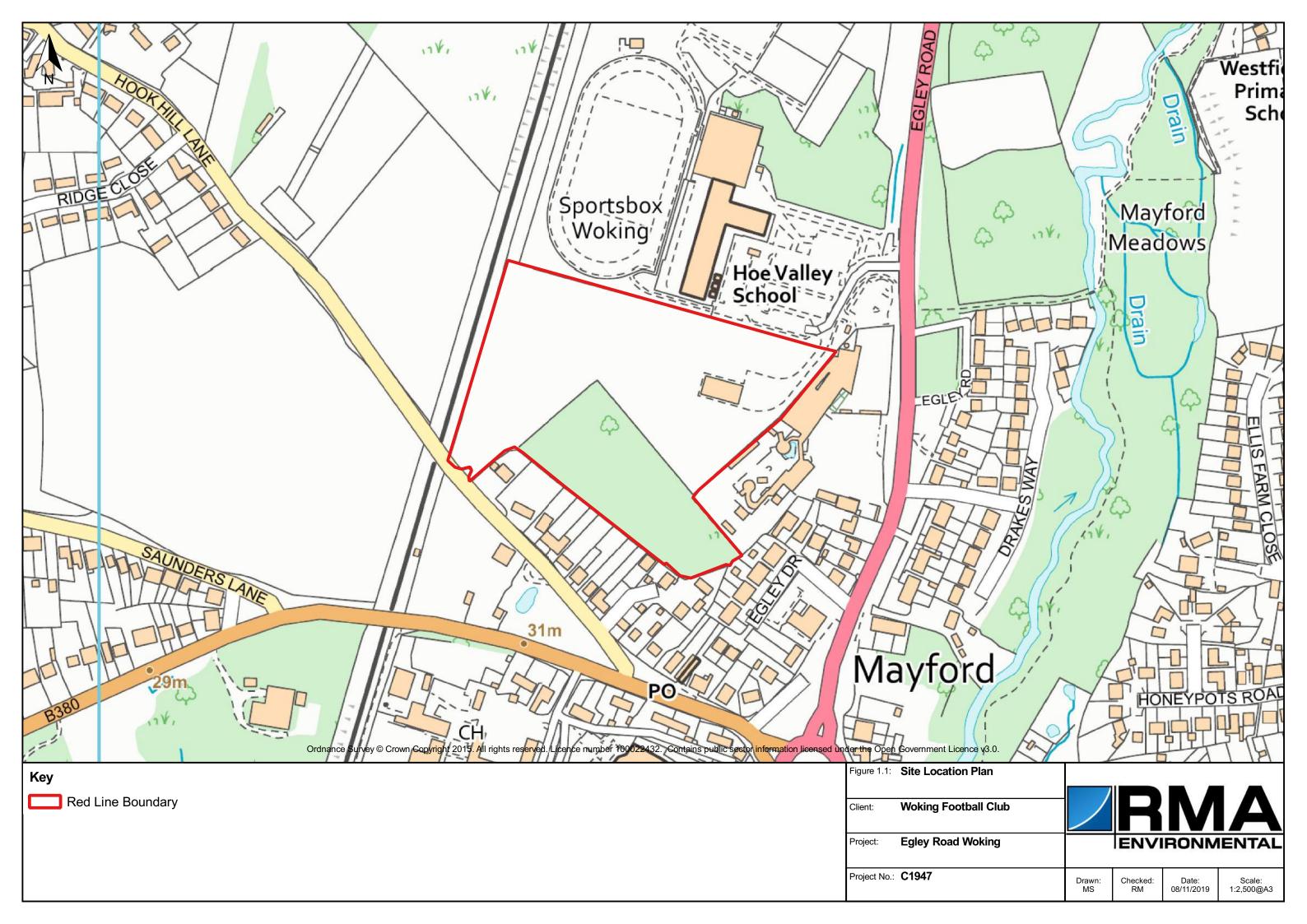
4.9 Full details of the proposed surface water drainage strategy are provided in Appendix C.

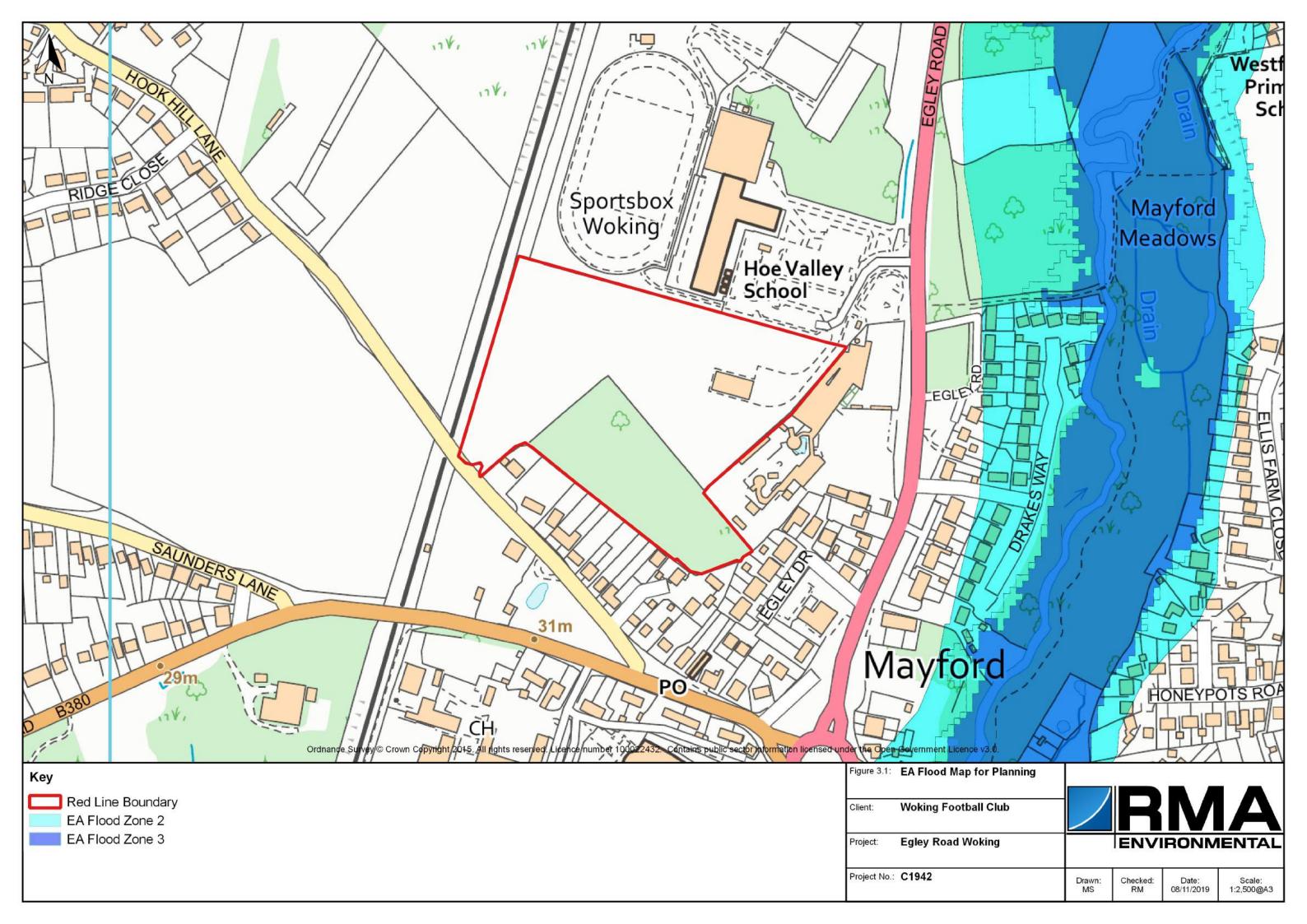
Designing for Exceedance Events

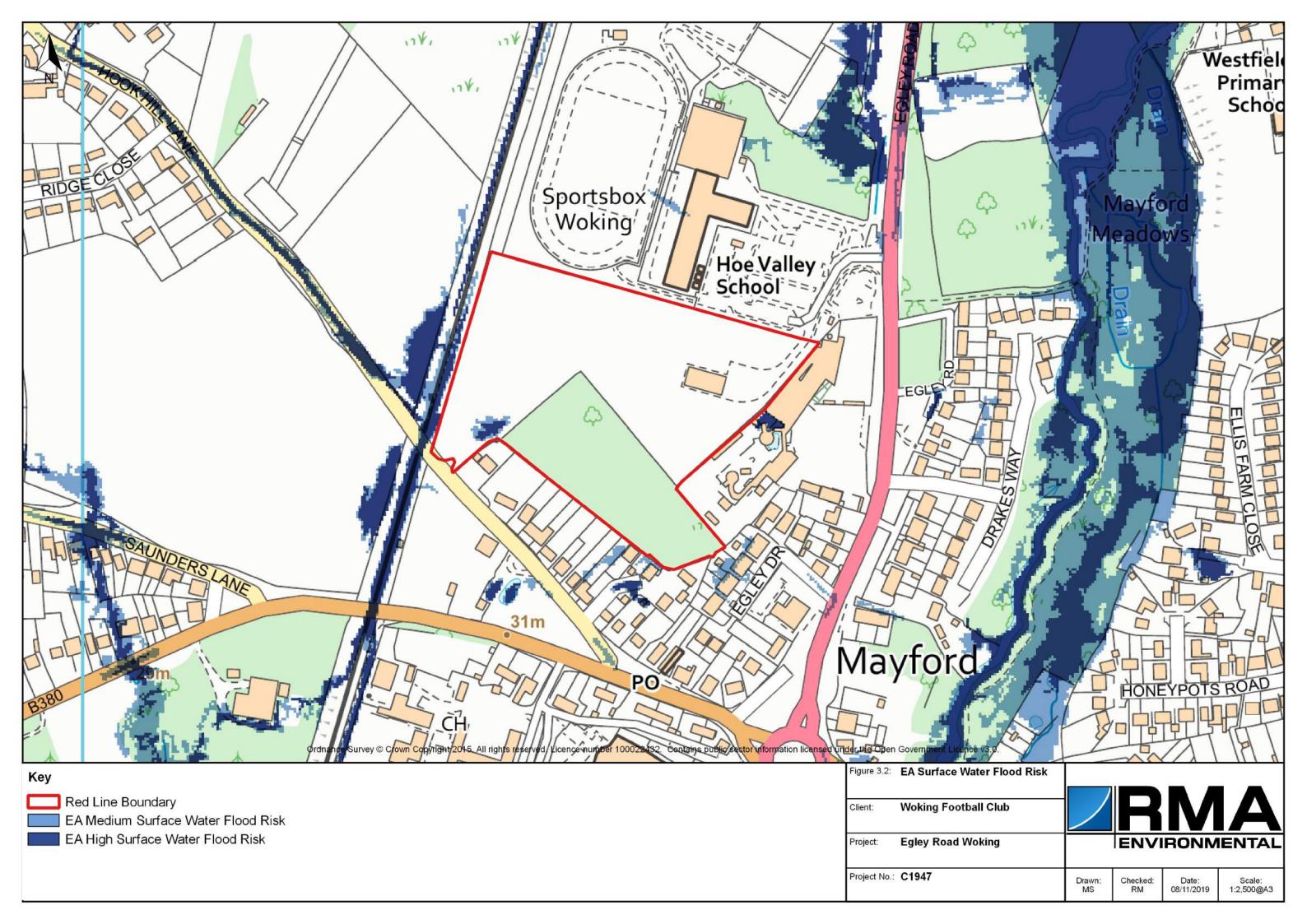
4.10 If the proposed drainage system were to become blocked or an event above the design event occur, then exceedance flows would be routed along the road network towards the north-eastern corner of the site and onto Egley Road and ultimately into the watercourse to the north of the site (refer to Figure 4.1). This would mimic what would occur on the site in its existing condition and would ensure that the proposed developments is safe during an exceedance event.

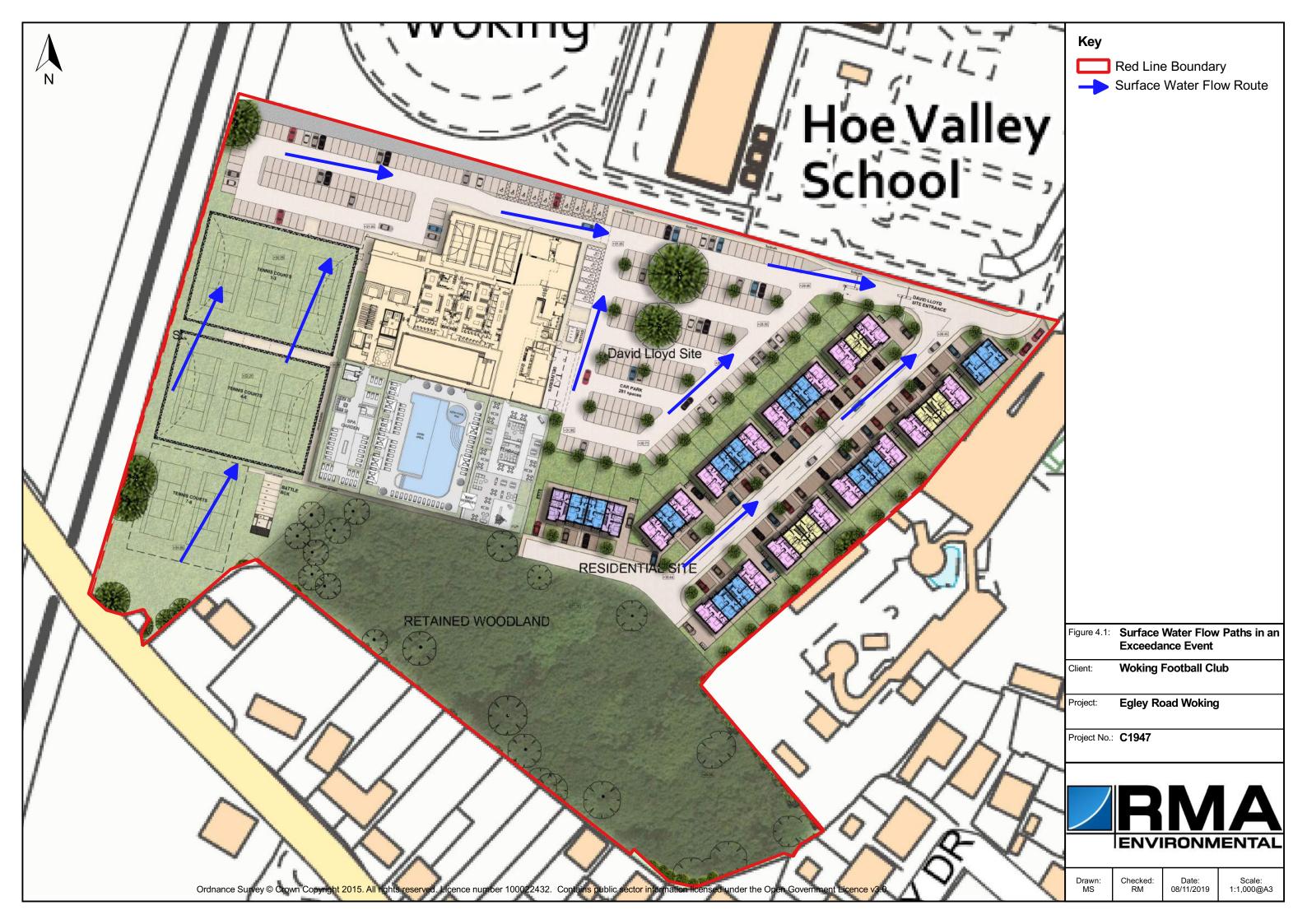
Long Term Maintenance of SuDS

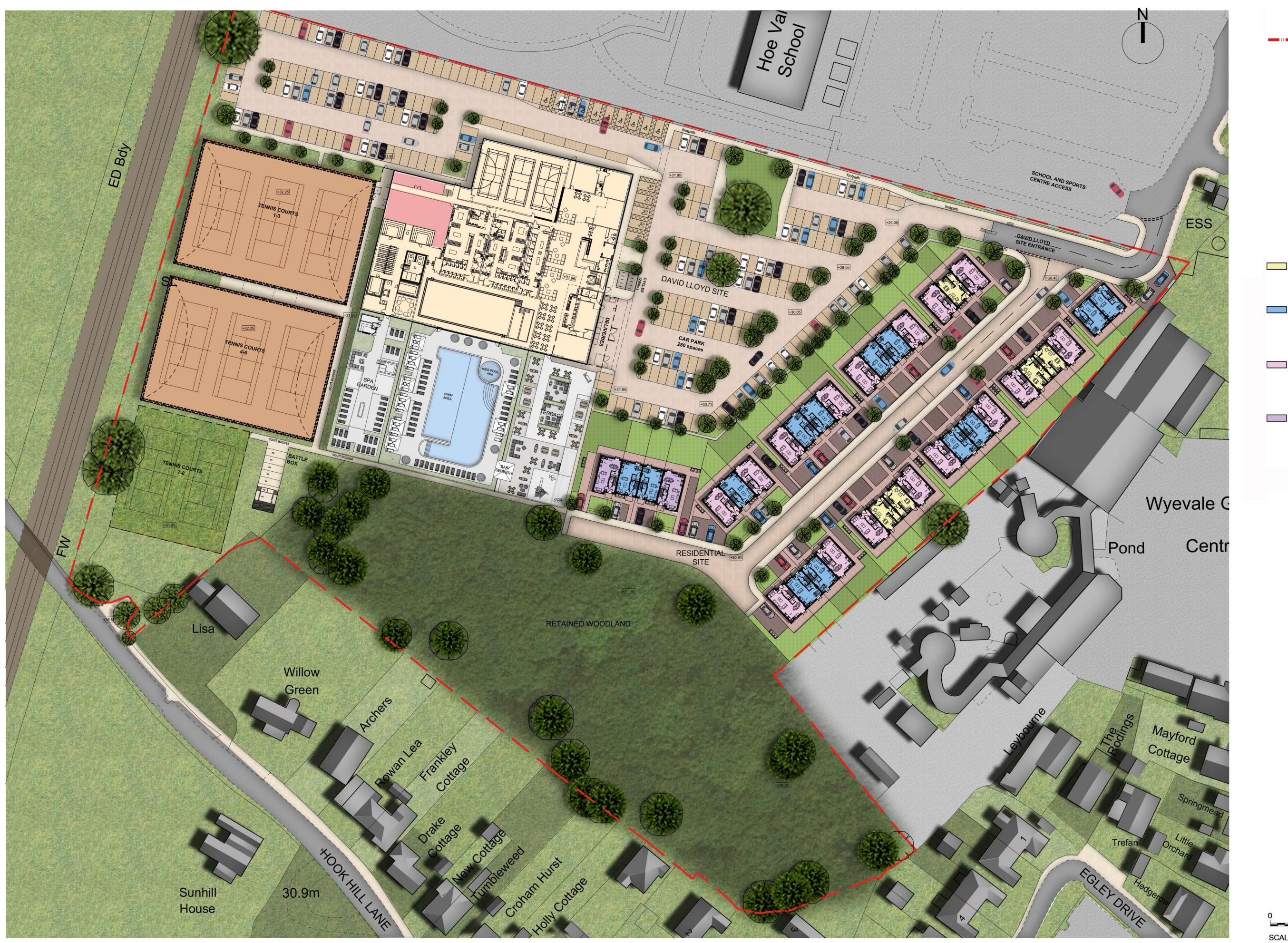
- 4.11 Where SuDS features serve more than one property, it would be the responsibility of the developer to either maintain the SuDS features themselves or to negotiate with and secure the agreement of a third party to maintain the sustainable drainage system.
- 4.12 The maintenance requirements of the proposed SuDS features for use in the drainage strategy are detailed in the SuDS Manual and would be carried out accordingly.


Foul Drainage


- 4.13 Consultation with Thames Water (refer to Appendix D) identifies the location of sewers in the vicinity of the Site. This has identified that there are foul sewers along Egley Road and Egley Drive to the east and Chiltern Close and Hook Hill Lane to the south.
- 4.14 Consultation with Thames Water was undertaken to determine if there is sufficient capacity within the local foul sewerage system (refer to Appendix D). This states that the foul sewerage network does not currently have enough capacity to serve the development. Therefore, Thames Water are required to carry out detailed modelling work and potential off-site reinforcement to ensure the necessary improvement are in place prior to the development going ahead.
- 4.15 It should be noted that since the publication of the new connections and development charging rules in April 2018, drainage authorities in England are obligated to provide a point of connection and undertake any mitigation or improvement works and network reinforcements, where necessary. These will be programmed once planning consents are granted. Therefore, it is recommended that Thames Water should be consulted following planning consent so this detailed network modelling can be undertaken.


5 CONCLUSIONS


- 5.1 The requirements for Flood Risk Assessment are provided in the National Planning Policy Framework and its associated Planning Practice Guidance, together with the Environment Agency's Guidance Notes. This policy and associated guidance have been followed in the preparation of this FRA.
- 5.2 The EA's flood map for planning identifies that the entire site lies within Flood Zone 1 and, therefore, flood risk from rivers and the sea is considered to be low. The EA's surface water flood risk map identifies that the majority of the site has a very low risk of surface water flooding. There is a small area of medium to high surface water flood risk located in the south-western extent of the site. However, the EA's flood mapping indicates that this is limited in size and does not form part of surface water flow path (i.e. it is ultimately ponded water).
- 5.3 The SFRA indicates the site lies within a postcode area with six records of sewer flooding in the past ten years therefore the site has a low risk of sewer flooding.
- 5.4 A review of further EA maps and the SFRA have identified that there are no other significant sources of flooding at the site, i.e. from groundwater or reservoirs. The SFRA and the EA's historic flood map indicate that there are no historic flood records for the site or the surrounding area.
- 5.5 The site is located entirely within Flood Zone 1 (low risk) and therefore safe access/egress via Egley Road would not be affected by fluvial or tidal flooding. There are small areas of low surface water flood risk along Egley Road; however, the flood depth is estimated to be less than 300 mm and therefore safe access/egress from the site would still be possible.
- 5.6 The proposed drainage strategy comprises of lined permeable paving and geo-cellular storage and would ensure that surface water runoff rates for the proposed development would be limited to Qbar which is a betterment on both the existing drainage arrangement and greenfield runoff rates. Surface water runoff would discharge into the public sewer to the north of the site. Attenuation would be provided for all return periods up to and including the 1 in 100 year event inclusive of a 40% allowance for climate change.
- 5.7 This FRA has therefore demonstrated that the proposed development will be safe and that it would not increase flood risk elsewhere. The proposed land use is classified as 'more vulnerable' for the residential element and 'less vulnerable' for the leisure centre and is considered appropriate in relation to the flood risk vulnerability classifications set out in Table 3 of the NPPF. The development should therefore be considered acceptable in planning policy terms.



Appendix A: Proposed Development Layout

1	0.00	0	NI	D
Ι.			IN	1)
-		\sim	1.4	

SITE BOUNDARY (Leisure Site Area: 22,303sqm)

(Residential Site Area: 9,161sqm)

RESIDENTIAL: 0.91 hectares 36no. houses

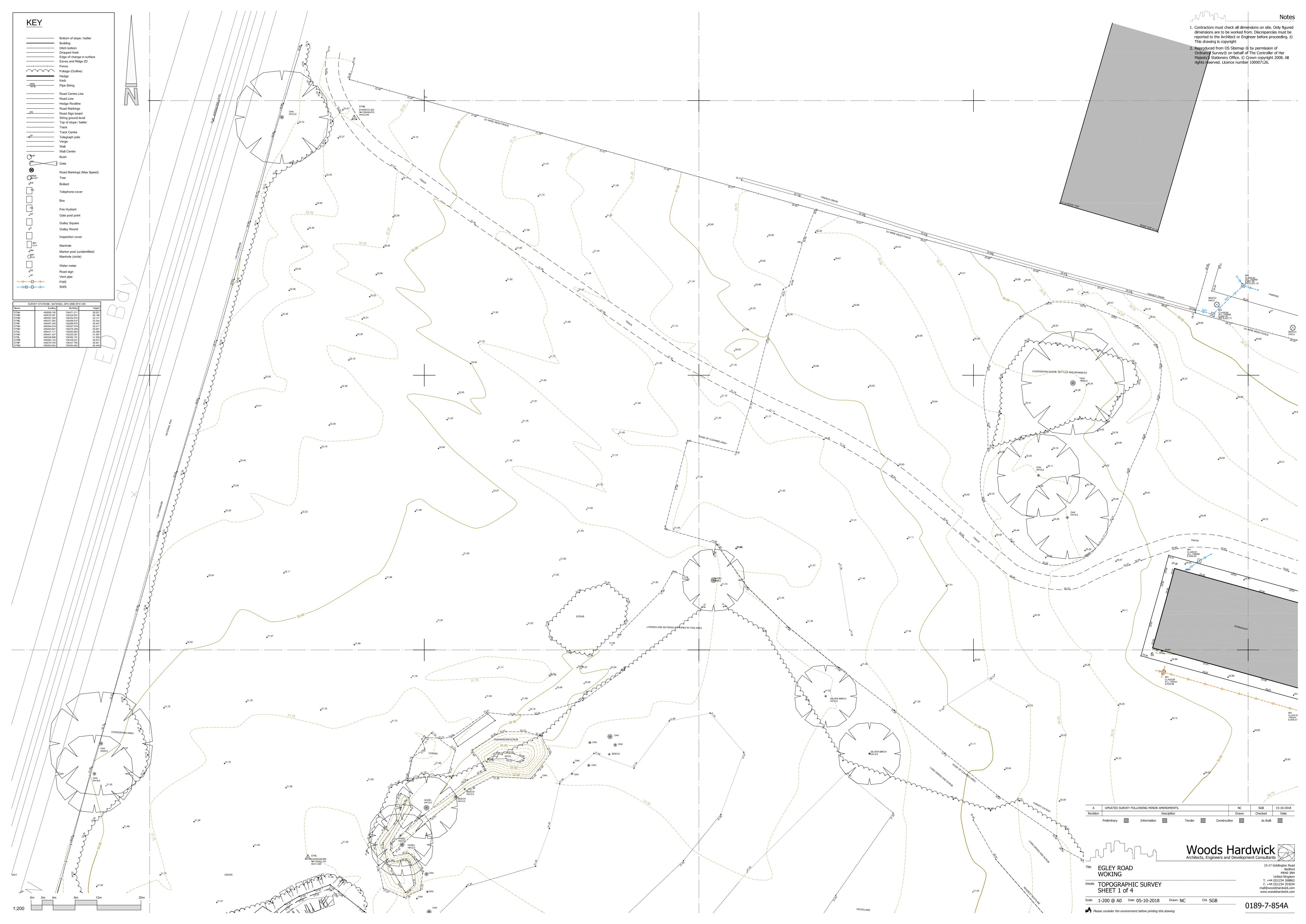
05 x House Type 1
13 x House Type 2
16 x House Type 3
02 x House Type 4

Gross density: 39 dwellings/ha 58,366 sqft saleable area 90 parking spaces provided

House Type 1 2/3 BEDROOM (4 PEOPLE) TOWNHOUSE (123.2sqm /1326sqft)

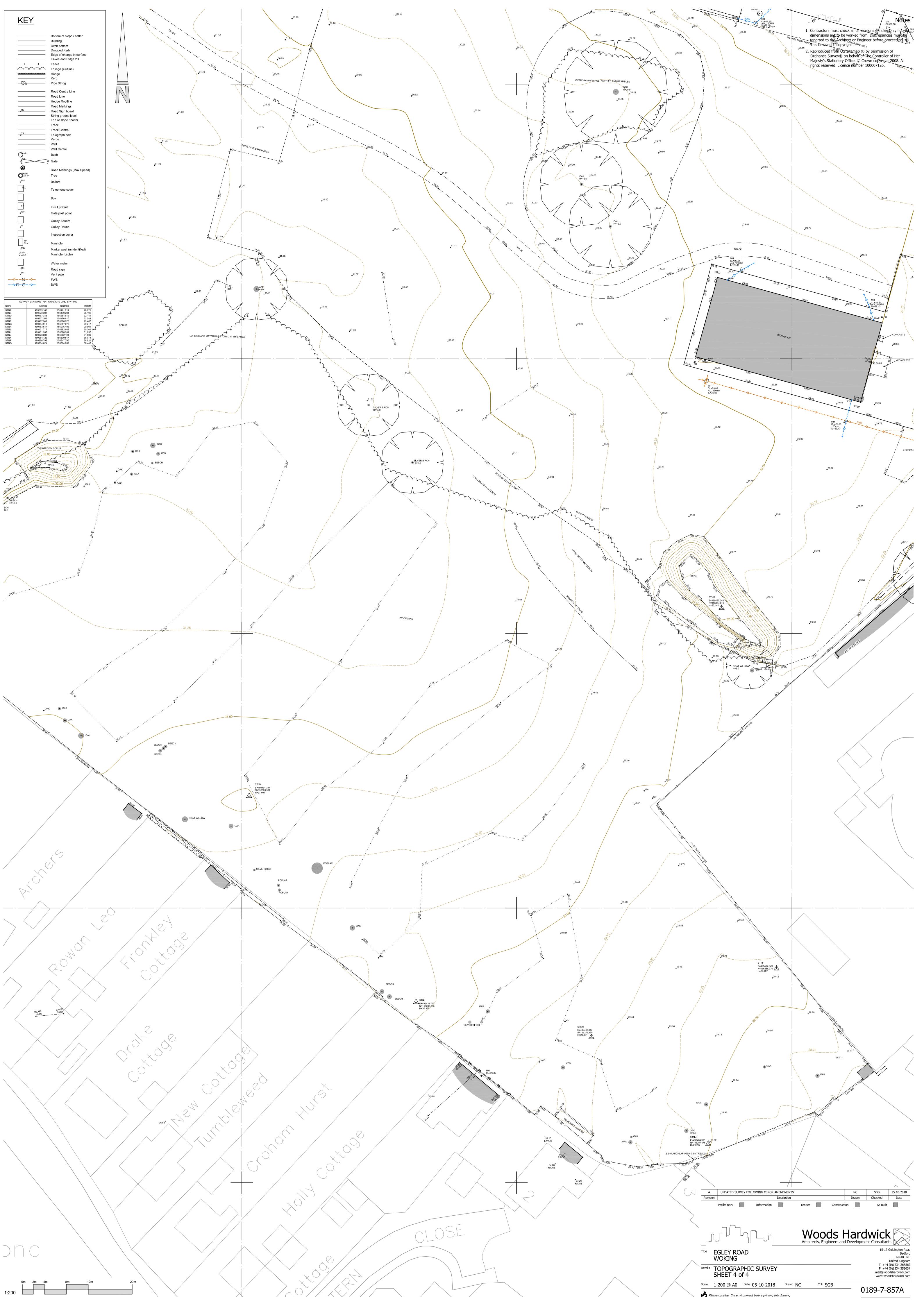
House Type 2 3 BEDROOM (6 PEOPLE) TOWNHOUSE (145sqm /1560sqft)

House Type 3 4 BEDROOM (8 PEOPLE) TOWNHOUSE (162.3sqm /1747sqft)


House Type 4 5 BEDROOM (9 PEOPLE) TOWNHOUSE (162.3sqm /1747sqft)

0	10	20m	40
Ŭ			1.

SCALE @ 1:500


7884 EGLEY ROAD, WOKING : PROPOSED SITE / GROUND FLOOR PLAN Scale: 1:500@A1 Auth By: CJG Drawn By: IS Date: 05.11.19 Dwg No: 7884-L(00)103N

Appendix B: Topographical Survey

Appendix C: Drainage Strategy

PURPOSE

The purpose of this Design Statement is to describe how the surface water drainage strategy for the proposed redevelopment of the Egley Road site will manage runoff in a manner that will mitigate the risk of flooding and pollution to the environment.

SCOPE

This design addresses runoff from areas within the red line boundary for the planning application.

DESIGN CONSTRAINTS

A ground investigation has been carried out. A combination of high groundwater levels and low percolation rates indicates that infiltration will not be feasible. Refer to the main body of the report for a description of the ground investigations carried out at the site.

There is limited information on the drainage arrangements for the existing site. However, the topographic survey shows a number of surface water sewers within the site and indicates that these are likely to be connected to the existing public surface water sewer in the adjacent access road to Hoe Valley School.

In pre-application discussions with the Lead Local Flood Authority it has been stipulated that runoff from the site should be limited as close as practicable to greenfield conditions.

The proposed site will have two distinct functions; the main area of the site will be developed with a new health club, while the remainder is to be used for residential development. It is a requirement that the drainage system for the heath club be separate from that of the residential development.

DESIGN STANDARDS

The proposed surface water drainage system is to be designed to ensure that all runoff from the 100year rainfall event plus a 40% increase in rainfall intensity is managed in accordance with DEFRA's Technical Standards for Sustainable Drainage Systems.

DESIGN - STRATEGY

It is proposed to attenuate runoff prior to discharge to the public surface water sewer. Attenuation will be provided in:

- the granular material beneath permeable paving;
- lined geocellular tanks.

The rate of discharge from the site will be controlled by means of a Hydro-Brake.

The proposed drainage layout is shown on drawing SK100 in Appendix B.

DESIGN - DETAIL

Volumetric Control

The MicroDrainage software suite has been used to model the performance of the proposed drainage system. The model and simulation results are included in Appendix A.

Treatment Design

The pollution treatment requirements for the site have been established using the Simple Index Approach set out in Table 26.1 of the SUDS Manual.

Pollution hazard levels have been derived From Table 26.2 and are shown in the following table.

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydro- Carbons
Roads with more than 300 vehicle movements/day	Medium	0.7	0.6	0.7
Residential roofs	Very low	0.2	0.2	0.05

Table 1 – Pollution Hazard Indices

The following table shows how runoff from the above areas will be treated. The figure in brackets is the target level of treatment.

Land Use	Treatment	Total Suspended Solids (TSS)	Metals	Hydro- Carbons
Roads with more than 300 vehicle movements/day	Permeable paving	0.7 (0.7) OK	0.6 (0.6) OK	0.7 (0.7) OK
Residential roofs	Bioretention areas (i.e. rain gardens and tree pits)	0.2 (0.8) OK	0.2 (0.8) OK	0.05 (0.8) OK

Table 2 – Proposed SuDS Mitigation Indices

Comparing the pollution hazard indices in Table 1 with the mitigation indices in Table 2 indicates that the proposed treatment measures are appropriate for the site use.

Compliance with Technical Standards for Sustainable Drainage Systems

The following sections describe how the proposed surface water drainage system meets the requirements of the DEFRA document Non-Statutory Technical Standards for Sustainable Drainage Systems.

S1 Where the drainage system discharges to a surface water body that can accommodate uncontrolled surface water discharges without any impact on flood risk from that surface water body (e.g. the sea or a large estuary) the peak flow control standards (**S2** and **S3** below) and volume control technical standards (**S4** and **S6** below) need not apply

There are no water bodies in the vicinity of the proposed development that are capable of accommodating uncontrolled runoff without increasing flood risk.

S2 For greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event.

Not applicable – brownfield site.

S3 For developments which were previously developed, the peak runoff rate from the development to any drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event must be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to redevelopment for that event.

Greenfield runoff rates for the existing site area have been estimated using the MicroDrainage software suite (see Appendix A) and are shown in the following table.

Return Period (years)	Runoff (I/s)
Qbar	9.92
1	8.43
30	22.47
100	31.63

Table 3 – Greenfield Runoff Rates for Entire Site

At present almost the entire site comprises a permeable stone surface, the only exception being a single building with a footprint of 465m². The runoff from the building appears to discharge to the public surface water sewer. Rates of runoff have been calculated using a simple MicroDrainage model and are summarised in the following table. Model printouts are included in Appendix A.

Return Period (years)	Runoff (I/s)
Qbar	-
1	8.0
30	19.7
100	24.8
100+40%	31.1

Table 4 – Estimate of Discharge Rates to the Public Sewer

In view of the fact that runoff characteristics for the site almost replicate the greenfield condition it is proposed to limit discharge rates to greenfield rates.

S4 Where reasonably practicable, for greenfield development, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event should never exceed the greenfield runoff volume for the same event.

Not applicable – brownfield site.

S5 Where reasonably practicable, for developments which have been previously developed, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6-hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.

Not practicable due to significant increase in impermeable areas, and ground conditions are not conducive to the use of concentrated infiltration techniques.

S6 Where it is not reasonably practicable to constrain the volume of runoff to any drain, sewer or surface water body in accordance with **S4** or **S5** above, the runoff volume must be discharged at a rate that does not adversely affect flood risk.

From the calculation in Appendix A it can be seen that the increase in the volume of runoff for the 100year, 6-hour rainfall event is approximately 724m³. To mitigate flood risk arising from the increase in volume it is proposed to limit the rate of discharge from the site to Qbar.

S7 The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur on any part of the site for a 1 in 30 year rainfall event.

The drainage system has been designed such that runoff from all events up to the 100year +40% will be stored below ground level. Refer to the MicroDrainage outputs in Appendix A.

S8 The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur during a 1 in 100 year rainfall event in any part of: a building (including a basement); or in any utility plant susceptible to water (e.g. pumping station or electricity substation) within the development.

See S7 above.

S9 The design of the site must ensure that, so far as is reasonably practicable, flows resulting from rainfall in excess of a 1 in 100year rainfall event are managed in exceedance routes that minimise the risks to people and property.

Refer to Section 4.10 in the main body of the report.

\$10 Components must be designed to ensure structural integrity of the drainage system and any adjacent structures or infrastructure under anticipated loading conditions over the design life of the development taking into account the requirement for reasonable levels of maintenance.

Where practicable the drainage system will be located beyond the zone of influence of adjacent foundations. Where this is not practicable, foundations will be designed to allow for the replacement of the drainage system without the need for special support.

S11 The materials, including products, components, fittings or naturally occurring materials, which are specified by the designer must be of a suitable nature and quality for their intended use.

The surface water system will be designed in accordance with the SuDS Manual. The design will allow for replacement of component parts without long-term detriment to the performance of the system.

S12 Pumping should only be used to facilitate drainage for those parts of the site where it is not reasonably practicable to drain water by gravity.

Runoff will generally be disposed of by means of gravity.

S13 The mode of construction of any communication with an existing sewer or drainage system must be such that the making of the communication would not be prejudicial to the structural integrity and functionality of the sewerage or drainage system.

Connections to the existing drainage system will be made only by appropriately qualified and licensed contractors.

S14 Damage to the drainage system resulting from associated construction activities must be minimised and must be rectified before the drainage system is considered to be completed.

See S13 above.

APPENDIX A

CALCULATIONS

- 1. Greenfield runoff rates
- 2. MicroDrainage printout for proposed drainage system 100year +40% rainfall event
- 3. MicroDrainage printout for proposed drainage system 100yr-6hr
- 4. MicroDrainage printout for existing drainage system 100year +40% rainfall event

1. Greenfield Runoff Rates

Pitman Associates Ltd		Page 1		
South Lodge				
Exminster				
Devon EX6 8AT		Micco		
Date 01/09/2019 16:27	Designed by Karl	Micro		
File	Checked by	Drainage		
XP Solutions	Source Control 2019.1			
AF SOLUCIONS	Source control 2019.1			
IH 124 Mean Annual Flood				
Input				
Return Period (years) 1 Soil 0.400				
	na) 50.000 Urban 0.000			
SAAR (n	nm) 700 Region Number Region 6			
Results 1/s				
	2BAR Rural 170.1			
	BAR Urban 170.1			
	Ql year 144.6			
	Q1 year 144.6			
	Q2 years 149.9			
	Q5 years 217.7			
	Q10 years 275.6			
	Q20 years 340.8 Q25 years 365.4			
	Q30 years 385.5			
	Q50 years 445.7			
(2100 years 542.7			
V	2200 years 637.9			
(2250 years 668.6			
QI	1000 years 877.8			

Pro-rata for health club site area (2.221ha):

Qbar = 7.56l/s 1yr = 6.42l/s 30yr = 17.12l/s 100yr = 24.10l/s

Pro-rata for residential site area (0.694ha):

Qbar = 2.36l/s 1yr = 2.01l/s 30yr = 5.35l/s 100yr = 7.53l/s 2. MicroDrainage printout for proposed drainage system 100year +40% rainfall event

Pitman Associates Ltd	P	age 1
South Lodge		
Exminster		
Devon EX6 8AT		Micro
	Designed by Karl	Drainage
File Egley DL & Resi combined FTS - no drive ta	-	brainage
XP Solutions	Network 2019.1	
CHORN CENED DECT	CN by the Modified Dational Mathed	
STORM SEWER DESIG	GN by the Modified Rational Method	
Networl	k Design Table for Storm	
« - Ind	licates pipe capacity < flow	
PN Length Fall Slope I.Area	T.E. Base k n HYD DIA Section Type Auto	
(m) (m) (1:X) (ha) (n	mins) Flow (l/s) (mm) SECT (mm) Design	
S1.000 45.000 0.750 60.0 0.217	4.00 0.0 0.600 o 450 Pipe/Conduit 🔒	
S1.001 50.000 0.750 66.7 0.298	0.00 0.0 0.600 o 450 Pipe/Conduit 🍵	
S2.000 10.000 2.150 4.7 0.280	12.00 0.0 0.600 o 150 Pipe/Conduit 🍵	
S1.002 25.000 0.100 250.0 0.000 S1.003 45.000 0.500 90.0 0.104	0.00 0.0 0.600 o 450 Pipe/Conduit 0.00 0.0 0.600 o 450 Pipe/Conduit	
	_	
Ne	etwork Results Table	
PN Rain T.C. US/IL Σ	I.Area E Base Foul Add Flow Vel Cap Flow	
(mm/hr) (mins) (m)	(ha) Flow $(1/s)$ $(1/s)$ $(1/s)$ (m/s) $(1/s)$ $(1/s)$	
s1.000 75.00 4.29 <mark>30.700</mark>	0.217 0.0 0.0 0.0 2.63 418.0 44.1	
S1.001 75.00 4.62 29.950	0.515 0.0 0.0 0.0 2.49 396.5 104.6	
s2.000 75.00 12.04 31.650	0.280 0.0 0.0 0.0 4.71 83.2 56.9	
\$1.002 75.00 12.36 29.200 \$1.003 75.00 12.71 29.100	0.795 0.0 0.0 0.0 1.28 203.8 161.5 0.899 0.0 0.0 0.0 2.14 341.0 182.6	
51.005 /5.00 12./1 29.100	0.077 0.0 0.0 0.0 2.14 341.0 182.6	
	01982-2019 Innovyze	

Pitman Associates L	td													Page 2
South Lodge														
Exminster														New York
Devon EX6 8AT														Micro
Date 08/09/2019 19:	09					Desig	ned by Ka	rl						Drainage
File Egley DL & Res	i combin	ned FT	s – no	o driv	e ta	. Check	ed by							Diamage
XP Solutions						Netwo	rk 2019.1							- I
			STC	RM SEV	VER DES	IGN by	the Modif	fied Ra	tional	L Met	thod			
					Netwo	ork Desi	ign Table	for St	orm					
	PN	Length	Fall	Slope	I.Area	ጥ ድ	Base	k r	HYD	στα	Sect	ion Tv	pe Auto	
	14	(m)	(m)				Flow (1/s)		SECT		Dect	1011 IY	Design	
	S3.000	65.000	1.600	40.6	0.466	4.00	0.0	0.600	0	450	Pipe	/Condu	it 🔒	
	S3.001	33.000	0.400	82.5	0.086	0.00		0.600				/Condu	it 🧿	
	S3.002	6.000	0.100	60.0	0.126	0.00	0.0	0.600	0	450	Pipe	/Condu	it 🔒	
	S4.000	8.000	0.200	40.0	0.250	12.00	0.0	0.600	0	225	Pipe	/Condu	it 🦀	
	S5.000	8.000	1.000	8.0	0.090	12.00	0.0	0.600	0	150	Pipe	/Condu	it 🦀	
					<u>]</u>	Network	Results	Table						
	P	'N F	ain	T.C.	US/IL	Σ I.Area	a Σ Base	Foul	Add Fl	Low	Vel	Cap	Flow	
		(m	m/hr)	(mins)	(m)	(ha)	Flow (l/s) (l/s)	(1/s) ((m/s)	(l/s)	(1/s)	
	S3.	000	75.00	4.34	31.000	0.466	5 0.	0 0.0	(0.0	3.20	508.5	94.7	
					29.400			0 0.0				356.2		
	S3.	002	75.00	4.62	29.000	0.678	в о.			0.0	2.63	418.0	137.7	
	S4.	000	75.00	12.06	30.700	0.250	0.	0 0.0	(0.0	2.07	82.5	50.8	
	S5.	000	75.00	12.04	31.650	0.090	0.	0 0.0	(0.0	3.58	63.3	18.3	
						@1000	2010 Troo							
						©1982-	2019 Inno	vyze						

Pitman Associates Ltd											Page 3
South Lodge											
Exminster											
Devon EX6 8AT											Micro
Date 08/09/2019 19:09				-	ned by Kar	<u>-</u>					Draina
File Egley DL & Resi combined	FTS - no	o driv	e ta		=						
XP Solutions				Netwo	ork 2019.1						
	STC	ORM SEV	VER DES	IGN by	the Modif	ied Ra	tional Me	ethod			
			Netwo	rk Des	ign Table	for St	orm				
	ngth Fall m) (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)		h HYD DIA SECT (mm		ion Ty	pe Auto Design	
							-			-	
S1.004 6	000 0.700	8.6	0.000	0.00	0.0	0.600	o 15	0 Pipe,	/Condu	it 🦰	
S6.000 8	000 1.800	9 4.4	0.157	12.00	0.0	0.600	o 22	5 Pipe,	/Condu	it 🦀	
S1.005 5.	000 0.510	9.8	0.000	0.00	0.0	0.600	o 15	0 Pipe,	/Condu	it	
s7.000 30	000 0.610	49.2	0.050	4.00	0.0	0.600	o 22	5 Pipe,	/Condu	it	
S8.000 8	000 1.390	5.8	0.097	12.00	0.0	0.600	o 15	0 Pipe,	/Condu	it 🔒	
			1	Network	Results 1	able					
PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	a ΣBase Flow (l/s)		Add Flow (l/s)		-		
S1.004	75.00	12.74	28.600	1.91	7 0.0	0.0	0.0	3.46	61.2«	389.4	
S6.000	75.00	12.02	29.700	0.15	7 0.0	0.0	0.0	6.25	248.5	31.9	
S1.005	75.00	12.77	27.900	2.07	4 0.0	0.0	0.0	3.24	57.2«	421.3	
S7.000	75.00	4.27	28.000	0.05	0.0	0.0	0.0	1.87	74.3	10.2	
\$8.000	75.00	12.03	28.780	0.09	7 0.0	0.0	0.0	4.23	74.7	19.7	

Pitman Associates Ltd													Page 4
South Lodge													
Exminster													
Devon EX6 8AT													Micro
Date 08/09/2019 19:09					Desig	ned by	Karl						Drainage
File Egley DL & Resi con	mbined	FTS -	no dri	ve ta									Diamage
XP Solutions					Netwo	rk 201	9.1						
		0			OTCN bas	+ h - M.				Mathaal	1		
		2	TORM SI	SWER DE	SIGN by	the MC	301116	ed Ra	CIONAL	Method	1		
				Netw	ork Desi	gn Tab	ole fo	or Sto	orm				
PN	Length	Fall 9	Slope T	.Area I	E B	ase	k	n	HYD I	DIA S	Section	Type	Auto
	(m)		-		ins) Flow				SECT (1790	Design
S1.006	37.000	0.100	370.0	0.000	0.00	0.0	0.600)	0	225	Pipe/C	onduit	A
S1.007	31.000	0.090	344.4	0.000	0.00		0.600		0	225	-		. 🔒
S1.008	17.000	0.050	340.0	0.000	0.00	0.0	0.600)	0	225	Pipe/C	onduit	•
\$9.000	45.000	0.200	225.0	0.115	4.00	0.0		0.020) →[↓]	Cel	llular S	torage	•
\$10.000	10.000	1.325	7.5	0.051	4.00	0.0	0.600)	0	225	Pipe/C	onduit	•
					Network	Resul	ts Ta	ble					
				/							-		
	PN	Rain (mm/hr)	T.C. (mins)	•	Σ I.Area (ha)				Add Flo (l/s)		Cap (1/s)		
	S1.006 S1.007			3 27.390 2 27.290			0.0	0.0 0.0			26.8« 27.8«		
	S1.007 S1.008			2 27.290			0.0 0.0	0.0			27.8« 28.0«		
	S9.000	75.00	9 4.4	7 28.100	0.115		0.0	0.0	0.	0 1.58	6025.6	23.4	
	s10.000	75.00	9 4.03	3 29.800	0.051		0.0	0.0	0.	0 4.79	190.6	10.4	
					©1982-2	2010 -							
					ST 102-1		тто у у	20					

Pitman Associates Ltd		Page 5
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 08/09/2019 19:09	Designed by Karl	Drainage
File Egley DL & Resi combined FTS - no drive ta	Checked by	Diamacje
XP Solutions	Network 2019.1	

		<u>S</u>	TORM S	ewer d	ESIGN	by the Mo	odifi	ed Rat	tional	Meth	nod		
				Net	work D	Design Tal	ole f	or Sto	orm				
PN	Length (m)		Slope I (1:X)			Base Flow (l/s)	k (mm)	n	HYD SECT	DIA (mm)	Section 7	Гуре	Auto Design
S11.000	10.000	1.325	7.5	0.059	4.00	0.0	0.600	I	0	225	Pipe/Co	onduit	0
S12.000	10.000	1.125	8.9	0.051	4.00	0.0	0.600	I	0	225	Pipe/Co	onduit	0
\$13.000	10.000	1.125	8.9	0.052	4.00	0.0	0.600	I	0	225	Pipe/Co	onduit	0
\$9.001	60.000	0.200	300.0	0.048	0.00	0.0		0.020	$\rightarrow [\downarrow]$		Cellular St	torage	0
S14.000	10.000	1.125	8.9	0.053	4.00	0.0	0.600	I	0	225	Pipe/Co	onduit	0
					Netwo	ork Resul	ts Ta	ble					
	PN	Rain (mm/hr	T.C.) (mins	•		Area ΣB a) Flow			Add Fl (l/s)		-		
	s11.000	75.0	0 4.0	3 29.80	0 0	.059	0.0	0.0	0	.0 4	.79 190.6	12.0	
	s12.000	75.0	0 4.0	4 29.60	0 0	.051	0.0	0.0	0	.0 4	.42 175.6	10.4	
	S13.000	75.0	0 4.0	4 29.60	0 0	.052	0.0	0.0	0	.0 4	.42 175.6	10.6	
	S9.001	75.0	0 5.2	0 27.90	0 0	.376	0.0	0.0	0	.0 1	.37 5218.3	76.4	
	S14.000	75.0	0 4.0	4 28.90	0 0	.053	0.0	0.0	0	.0 4	.42 175.6	10.8	
					©19	82-2019 I	nnovy	ze					

Pitman Associates Ltd											Page 6
South Lodge											
Exminster											
Devon EX6 8AT											Micro
Date 08/09/2019 19:09				Design	ned by Kar	1					Drainage
File Egley DL & Resi combined	FTS -	no driv	re ta	Checke	ed by						Diamaye
XP Solutions				Networ	ck 2019.1						
	ar			TON 1	hina Maali Ca			1			
	S'	TORM SET	WER DES	IGN by	the Modif:	Led Ra	tional M	ethod	:		
			Netwo	rk Desi	gn Table i	for St	orm				
PN Lengtl	. F all (Slope I.2	Атоз П	F B	ase k	n	HYD DI	z 9	Section ?	Turne	Auto
(m)		(1:X) (1			(1/s) (mm)		SECT (mi		Section .	гуре	Design
S15.000 10.000	1.125	8.9 0	.055 4	.00	0.0 0.60	0	o 2:	25	Pipe/Co	onduit	•
S16.000 10.000	0.625	16.0 0	.045 4	.00	0.0 0.60	0	o 2:	25	Pipe/Co	onduit	•
S17.000 10.000	0.625	16.0 0	.050 4	.00	0.0 0.60	0	o 2:	25	Pipe/Co	onduit	•
\$9.002 60.000	0 300 3	200 0 0	024 0	.00	0.0	0 02	0 →[↓]	Cel	lular St	torade	A
\$9.003 16.000				.00	0.0		0 0 2:		Pipe/Co		•
			Ν	Jetwork	Results T	able					
			=						-		
PN	Rain (mm/hr)	T.C.) (mins)	-	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (1/s)		-		
015 000	75.00			0.055			0.0	4 40	175 6	11 0	
S15.000	75.00	J 4.04	28.900	0.055	0.0	0.0	0.0	4.42	175.6	11.2	
S16.000	75.00	4.05	28.400	0.045	0.0	0.0	0.0	3.29	130.7	9.1	
S17.000	75.00	0 4.05	28.400	0.050	0.0	0.0	0.0	3.29	130.7	10.2	
S9.002	75.00	0 6.28	27.700	0.603	0.0	0.0	0.0	0.93	1325.8	122.5	

Pitman Associates Ltd											Page 7
South Lodge											
Exminster											
Devon EX6 8AT											Micro
Date 08/09/2019 19:09				-	ed by Karl	1					Drainage
File Egley DL & Resi combined F	TS – no	o drive	e ta								Drainage
XP Solutions				Networ	k 2019.1						
	0.00	DM OPH		TON here	-b- Medifi			امما خم			
	510	RM SEW	ER DES.	IGN DY 1	the Modifi	ed Rat	LIONAL M	etnoa			
			Netwo	rk Desig	gn Table f	or Sto	orm				
		_									
PN Leng (m)	th Fall				Base Flow (l/s)		1 HYD DI SECT (mi		ion Ty	ype Auto Design	
(,	(,	(,	()	(()		,			
S18.000 10.0	00 0.600	16.7	0.037	4.00	0.0	0.600	o 2:	25 Pipe	e/Condu	it 🦀	
S9.004 19.0	00 0.100	0 190.0	0.000	0.00	0.0 (0.600	o 2:	25 Pipe	e/Condu	it 🤒	
			N	letwork	Results Ta	able					
PN	Rain	тс		T Area	Σ Base	Foul	Add Flow	Vel	Can	Flow	
	(mm/hr)		•		Flow (1/s)				-		
S18.000	75.00	4.05	27.850	0.037	0.0	0.0	0.0	3.22	128.1	7.5	
\$9.004	75.00	7.55	27.250	0.694	0.0	0.0	0.0	0.95	37.6«	141.0	

Pitman Associates Ltd		Page 8
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 08/09/2019 19:09	Designed by Karl	Drainage
File Egley DL & Resi combined FTS - no drive ta	Checked by	Diamacje
XP Solutions	Network 2019.1	

	Manhole	Schedules	for	Storm
--	---------	-----------	-----	-------

MH Name	MH CL (m)	MH Depth (m)	MH Connect	MH ion Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	32.250	1.550	Open Man	hole 1350	s1.000	30.700	450				
s2	32.250	2.300	Open Man	hole 1350	s1.001	29.950	450	s1.000	29.950	450	
S2	31.950	0.300	Open Man	hole 1200	s2.000	31.650	150				
S2	31.950	2.750	Open Man	hole 1350	S1.002	29.200	450	S1.001	29.200	450	
								s2.000	29.500	150	
S3	31.950	2.850	Open Man	hole 1350	s1.003	29.100	450	S1.002	29.100	450	
s3	32.250	1.250	Open Man	hole 1350	s3.000	31.000	450				
s3	31.950	2.550	Open Man	hole 1350	s3.001	29.400	450	s3.000	29.400	450	
S4	31.950	2.950	Open Man	hole 1350	s3.002	29.000	450	s3.001	29.000	450	
S9	31.000	0.300	Open Man	hole 1200	S4.000	30.700	225				
S10	31.950	0.300	Open Man	hole 1200	S5.000	31.650	150				
S7	31.000	2.400	Open Man	hole 1350	S1.004	28.600	150	s1.003	28.600	450	
								s3.002	28.900	450	600
								S4.000	30.500	225	1975
								S5.000	30.650	150	2050
S12	30.000	0.300	Open Man	hole 1200	S6.000	29.700	225				
S8	30.000	2.100	Open Man	hole 1200	S1.005	27.900	150	S1.004	27.900	150	
								s6.000	27.900	225	
S11	29.080	1.080	Open Man	hole 1200	S7.000	28.000	225				
				(D1982-2	2019 Innov	vyze				

Pitman Associates Ltd		Page 9
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 08/09/2019 19:09	Designed by Karl	Drainage
File Egley DL & Resi combined FTS - no drive ta	Checked by	Diamacje
XP Solutions	Network 2019.1	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S15	29.080	0.300	Open Manhole	1200	S8.000	28.780	150				
S9	29.080	1.690	Open Manhole	1200	S1.006	27.390	225	s1.005	27.390	150	
								S7.000	27.390	225	
								S8.000	27.390	150	
S17	28.700	1.410	Open Manhole	1200	S1.007	27.290	225	S1.006	27.290	225	
S18	28.200	1.000	Open Manhole	1200	S1.008	27.200	225	S1.007	27.200	225	
S	28.000	0.850	Open Manhole	0		OUTFALL		S1.008	27.150	225	
S1	31.000	2.900	Open Manhole	3000	s9.000	28.100					
s3	30.400	0.600	Open Manhole	1200	s10.000	29.800	225				
S5	30.400	0.600	Open Manhole	1200	s11.000	29.800	225				
S8	30.200	0.600	Open Manhole	1200	s12.000	29.600	225				
S9	30.200	0.600	Open Manhole	1200	s13.000	29.600	225				
S10	30.640	2.740	Open Manhole	3000	S9.001	27.900		S9.000	27.900		
								S10.000	28.475	225	
								S11.000	28.475	225	
								S12.000	28.475	225	
								S13.000	28.475	225	
S13	29.500	0.600	Open Manhole	1200	s14.000	28.900	225				

Pitman Associates Ltd		Page 10
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 08/09/2019 19:09	Designed by Karl	Drainage
File Egley DL & Resi combined FTS - no drive ta	Checked by	Diamacje
XP Solutions	Network 2019.1	

				Manh	nole Sch	edules fo	or Storm				
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S12	29.500	0.600	Open Manhole	1200	s15.000	28.900	225				
S14	29.000	0.600	Open Manhole	1200	s16.000	28.400	225				
S15	29.000	0.600	Open Manhole	1200	S17.000	28.400	225				
S19	30.000	2.300	Open Manhole	3000	\$9.002	27.700		S9.001	27.700		
								S14.000	27.775	225	
								S15.000	27.775	225	
								S16.000	27.775	225	
								S17.000	27.775	225	
S38	28.450	1.050	Open Manhole	3000	\$9.003	27.400	225	S9.002	27.400		
S17	28.450	0.600	Open Manhole	1200	s18.000	27.850	225				
S40	28.200	0.950	Open Manhole	1200	S9.004	27.250	225	S9.003	27.250	225	
								S18.000	27.250	225	
S	28.000	0.850	Open Manhole	0		OUTFALL		S9.004	27.150	225	

No coordinates have been specified, layout information cannot be produced.

Pitman Associates Ltd									Page 11
South Lodge									
Exminster									
Devon EX6 8AT									Micro
Date 08/09/2019 19:09				Des	igned by	/ Karl			A DECEMBER OF THE OWNER OF
File Egley DL & Resi combined FTS	– no	drive	e ta	Che	cked by				Draina
XP Solutions				Net	work 201	9.1			
			PI	PELINE	SCHEDUL	ES for	Storm		
				Ups	tream M	anhole			
PN	Hud	Diam	мн	C Level	I.Level	D Depth	МН	MH DIAM., L*W	
EN		(mm)		(m)	(m)	(m)	Connection	(mm)	
21 . 0.0) -		0.1	22.250	20 700	1 100	Onen Manhala	1250	
S1.000 S1.001		450		32.250 32.250			Open Manhole Open Manhole		
51.001		100	02	02.200	20.000	1.000	open namore	1000	
S2.000) 0	150	S2	31.950	31.650	0.150	Open Manhole	1200	
S1.002	> _	450	s2	31.950	29 200	2 300	Open Manhole	1350	
S1.002 S1.003		450		31.950			Open Manhole		
			_						
\$3.000) 0	450	S3	32.250	31.000	0.800	Open Manhole	1350	
				Down	stream 1	Manhole	2		
PN	Length	Slope	мн	C.Level	L I.Level	D.Deptl	h MH	MH DIAM., L*W	
	(m)	(1:X)	Name	e (m)	(m)	(m)	Connectio	n (mm)	
S1.000	45.000	60.0) S2	2 32.250	29.950	1.85) Open Manho	le 1350	
S1.001	50.000	66.7	S2	2 31.950	29.200	2.30	0 Open Manho	le 1350	
S2.000	10.000	4.7	Sź	2 31.950	29.500	2.30	0 Open Manho	le 1350	
							±		
\$1.002					29.100		O Open Manho		
S1.003	45.000	90.0	s s'	7 31.000	28.600	1.95	0 Open Manho	le 1350	
02 000	65.000	40 G	; q'	3 31 950	29.400	2 10	0 Open Manho	le 1350	

Pitman Associates Ltd		Page 12
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 08/09/2019 19:09	Designed by Karl	Drainage
File Egley DL & Resi combined FTS - no drive ta	Checked by	Dramaye
XP Solutions	Network 2019.1	•

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd Sect		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S3.001 S3.002	0 0	450 450	S3 S4	31.950 31.950	29.400 29.000		Open Manhole Open Manhole	1350 1350
S4.000	0	225	S9	31.000	30.700	0.075	Open Manhole	1200
S5.000	0	150	S10	31.950	31.650	0.150	Open Manhole	1200
S1.004	0	150	s7	31.000	28.600	2.250	Open Manhole	1350

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S3.001 S3.002	33.000 6.000	82.5 60.0	S4 S7	31.950 31.000	29.000 28.900		Open Manhole Open Manhole	1350 1350
S4.000	8.000	40.0	s7	31.000	30.500	0.275	Open Manhole	1350
S5.000	8.000	8.0	s7	31.000	30.650	0.200	Open Manhole	1350
S1.004	6.000	8.6	S8	30.000	27.900	1.950	Open Manhole	1200

Pitman Associates Ltd									Page 13
South Lodge									
Exminster									
Devon EX6 8AT									Micro
Date 08/09/2019 19:09				Des	igned b	y Karl			Drainage
File Egley DL & Resi combined FTS	– no	drive	e ta.						Drainacyc
XP Solutions				Netv	vork 20	19.1			
			PII	PELINE	SCHEDUI	ES for	Storm		
				Ups	tream M	Manhole			
PN		Diam (mm) N		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)	
s6.000	0	225	S12	30.000	29.700	0.075	Open Manhole	1200	
S1.005	0	150	S8	30.000	27.900	1.950	Open Manhole	1200	
\$7.000	0	225	S11	29.080	28.000	0.855	Open Manhole	1200	
\$8.000	0	150	S15	29.080	28.780	0.150	Open Manhole	1200	
S1.006	0	225	S9	29.080	27.390	1.465	Open Manhole	1200	
				Down	stream	Manhole	1		
PN I	Cength (m)	Slope (1:X)			. I.Leve (m)	l D.Depth (m)	n MH Connection	MH DIAM., L*W (mm)	
\$6.000	8.000	4.4	S8	30.000	27.90	0 1.875	5 Open Manhole	e 1200	
S1.005	5.000	9.8	S9	29.080	27.39	0 1.540) Open Manhole	e 1200	
\$7.000 3	30.000	49.2	S9	29.080	27.39	0 1.465	5 Open Manhole	e 1200	
S8.000	8.000	5.8	S9	29.080	27.39	0 1.540) Open Manhole	e 1200	
\$1.006 3	37.000	370.0	S17	28.700	27.29	0 1.185	5 Open Manhole	e 1200	
				©1982	2-2019	Innovyze	9		

Pitman Associates Ltd		Page 14
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 08/09/2019 19:09	Designed by Karl	Drainage
File Egley DL & Resi combined FTS - no drive ta	Checked by	Diamage
XP Solutions	Network 2019.1	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd Sect		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)	
S1.007 S1.008	0 0	225 225	S17 S18	28.700 28.200	27.290 27.200		Open Manhole Open Manhole	1200 1200	
S9.000	$\rightarrow [\downarrow]$		S1	31.000	28.100	2.099	Open Manhole	3000	
S10.000	0	225	S3	30.400	29.800	0.375	Open Manhole	1200	
s11.000	0	225	S5	30.400	29.800	0.375	Open Manhole	1200	

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
	31.000 17.000			28.200 28.000	27.200 27.150		Open Manhole Open Manhole	1200 0
S9.000	45.000	225.0	S10	30.640	27.900	1.939	Open Manhole	3000
S10.000	10.000	7.5	S10	30.640	28.475	1.940	Open Manhole	3000
S11.000	10.000	7.5	S10	30.640	28.475	1.940	Open Manhole	3000

Pitman Associates Ltd									Page 15
South Lodge									
Exminster									
Devon EX6 8AT									Micro
Date 08/09/2019 19:09				Desi	gned by	v Karl			Drainage
File Egley DL & Resi combined FT	s – no	drive	e ta.	Chec	ked by				Diamage
XP Solutions				Netw	ork 201	9.1			
			PIE	ELINE S	SCHEDUL	ES for	Storm		
				Upst	tream M	anhole			
PN		Diam (mm) 1		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)	
S12.0	00 0	225	S8	30.200	29.600	0.375	Open Manhole	1200	
\$13.0	00 0	225	S9	30.200	29.600	0.375	Open Manhole	1200	
\$9.0	01 →[↓]		S10	30.640	27.900	1.939	Open Manhole	3000	
S14.0	00 0	225	S13	29.500	28.900	0.375	Open Manhole	1200	
\$15.0	00 0	225	S12	29.500	28.900	0.375	Open Manhole	1200	
				Downs	stream 1	Manhole			
PN	-	-				L D.Deptl		MH DIAM., L*W	
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)	
\$12.000	10.000	8.9	S10	30.640	28.475	5 1.940) Open Manhole	e 3000	
\$13.000	10.000	8.9	S10	30.640	28.475	5 1.940) Open Manhole	e 3000	
\$9.001	60.000	300.0	S19	30.000	27.700	0 1.49	9 Open Manhole	e 3000	
S14.000	10.000	8.9	S19	30.000	27.775	5 2.000) Open Manhole	e 3000	
\$15.000	10.000	8.9	S19	30.000	27.775	5 2.000) Open Manhole	e 3000	
				©1982	-2019 I	innovyze	9		

Pitman Associates Ltd									Page 16
South Lodge									
Exminster									
Devon EX6 8AT									Micro
Date 08/09/2019 19:09				Desi	gned by	Karl			Drainage
File Egley DL & Resi combined FTS	– no	drive	ta.						Diamage
XP Solutions				Netw	ork 201	9.1			
			PIP	ELINE S	SCHEDULI	ES for :	Storm		
				Upst	cream Ma	anhole			
PN		Diam (mm) N		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)	
S16.000	0	225	S14	29.000	28.400	0.375	Open Manhole	1200	
\$17.000	0	225	S15	29.000	28.400	0.375	Open Manhole	1200	
\$9.002	\rightarrow [\downarrow]		S19	30.000	27.700	1.999	Open Manhole	3000	
\$9.003	0	225	S38	28.450	27.400	0.825	Open Manhole	3000	
S18.000	0	225	S17	28.450	27.850	0.375	Open Manhole	1200	
				Downs	stream 1	Manhole			
PN I	-	Slope (1:X)			. I.Level (m)	D.Depth (m)	n MH Connection	MH DIAM., L*W (mm)	
S16.000 1	L0.000	16.0	S19	30.000	27.775	5 2.000) Open Manhole	e 3000	
S17.000 1	L0.000	16.0	S19	30.000	27.775	5 2.000) Open Manhole	e 3000	
S9.002 €	50.000	200.0	S38	28.450	27.400	0.749) Open Manhole	e 3000	
S9.003 1	L6.000	106.7	S40	28.200	27.250	0.725	5 Open Manhole	e 1200	
S18.000 1	L0.000	16.7	S40	28.200	27.250	0.725	5 Open Manhole	e 1200	
				©1982	-2019 I	nnovyze	2		

Pitman Associates Ltd		Page 17
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 08/09/2019 19:09	Designed by Karl	Drainage
File Egley DL & Resi combined FTS - no drive ta	Checked by	Diamaye
XP Solutions	Network 2019.1	
PIPEI	LINE SCHEDULES for Storm Upstream Manhole	
	evel I.Level D.Depth MH MH DIAM., L*W m) (m) (m) Connection (mm)	
S9.004 o 225 S40 28	2.200 27.250 0.725 Open Manhole 1200	
	Downstream Manhole	
PN Length Slope MH C. (m) (1:X) Name	.Level I.Level D.Depth MH MH DIAM., L*W (m) (m) (m) Connection (mm)	
	28.000 27.150 0.625 Open Manhole 0 ing Outfall Details for Storm	
	ing outlait becaris for storm	
Outfall Outfa Pipe Number Name	ll C. Level I. Level Min D,L W e (m) (m) I. Level (mm) (mm) (m)	
S1.008	S 28.000 27.150 0.000 0 0	
	©1982-2019 Innovyze	

Pitman Associates Ltd		Page 18
South Lodge		
Exminster		
Devon EX6 8AT		Micco
Date 08/09/2019 19:09	Designed by Karl	Micro Drainage
File Egley DL & Resi combined FTS - no drive ta.	Checked by	Diamaye
XP Solutions	Network 2019.1	i
	owing Outfall Details for Storm	
	tfall C. Level I. Level Min D,L W	
Pipe Number N	ame (m) (m) I. Level (mm) (mm) (m)	
\$9.004	S 28.000 27.150 0.000 0 0	
	©1982-2019 Innovyze	

Pitman Associates	Ltd									Pag	je 19
South Lodge											
Exminster											Constant of the second
Devon EX6 8AT											Micro
ate 08/09/2019 19	9:09				Designed	by Karl					Drainage
'ile Egley DL & Re	esi co	mbined F	TS – no dr	rive ta	Checked 1	by					Drainacje
IP Solutions					Network	2019.1				I	
				Onl	ine Contro	ols for S	torm				
				- L			21 004 14-	1	11 -		
		Hyard	o-Brake® O	ptimum Ma	nnole: S/,	DS/PN: :	51.004, VO	lume (m³)	: 11.5		
		Unit Re	eference MD-	-SHE-0103-5	000-1200-50	00		Sump Avail	able Ye	5	
		Design H			1.2			Diameter			
		Design Flo	w (l/s)		5	.0	I	nvert Level	(m) 28.60	C	
			ish-Flo™				Outlet Pip				
			ojective Mi	nimise ups		5 55	sted Manhol	e Diameter	(mm) 120	C	
		Appl	ication		Surfa	ce					
		Control	Points	Head (m)	Flow (l/s)	Cont	crol Points	Head	(m) Flow (1/s)	
	Desi	ign Point	(Calculated) 1.200	5.0		Kick	-Flo® 0.	.745	4.0	
			Flush-Flo	™ 0.354	5.0	Mean Flow	over Head	Range	-	4.4	
The hydrological c	alculat	tions have	been based	on the Hea	ad/Discharge	e relations	ship for the	Hvdro-Bra	ke® Optimum	as specifi	ed. Should
another type of co											
Depth (m) Flow	(l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.100	3.4	0.600	4.7	1.600	5.7	2.600	7.2	5.000	9.8	7.500	11.8
0.200	4.7	0.800	4.1								
0.300	5.0	1.000									
0.400	5.0	1.200									
0.500	4.9	1.400	5.4	2.400	6.9	4.500	9.3	7.000	11.5	9.500	13.3

	Ltd										Pag	ge 20	
outh Lodge													
xminster												-	- 1 m
evon EX6 8AT												Min	(0)
ate 08/09/2019 19:	:09				Designed	by Karl						Dcai	
ile Egley DL & Res	si com	mbined F	TS – no c	drive ta	. Checked b	ру						DIG	inage
P Solutions					Network 2	2019.1					I		
		Hydr	o-Brake®	Optimum Ma	anhole: S8,	DS/PN:	S1.005, Vo	olume (m	³): 2.7				
		Unit Re	eference Mi	D-SHE-0114-5	000-0400-500	0		Sump Ava:	ilable	Yes			
		Design H	Head (m)		0.40	0		Diameter	r (mm)	114			
	Ι	Design Flo			5.			nvert Leve	. ,				
			ısh-Flo™				Outlet Pipe			150			
			ojective l lication	Minimise ups	tream storag Surfac		sted Manhole	e Diametei	r (mm)	1200			
		Abbī	LICALION		Sullac	e							
		Control	Points	Head (m)	Flow (l/s)	Cont	crol Points	Hea	d (m) Flo	ow (l/s)			
	Desi	an Point	(Calculate	ed) 0.400	5.0		Kick-	-Flo®	0.312	4.5	i		
		<u> </u>	Flush-Fl	Lo™ 0.169	5.0	Mean Flow	over Head H		-	4.0			
		-	Flush-Fl				over Head H	Range	-	4.0)		
The hydrological cal		ions have	Flush-Fl	ed on the He	ad/Discharge	relations	over Head Head Head H	Range Hydro-Br	- ake® Opti	4.0 imum as	specifi		
The hydrological cal another type of cont		ions have	Flush-Fl	ed on the He	ad/Discharge	relations	over Head Head Head H	Range Hydro-Br	- ake® Opti	4.0 imum as	specifi		
	trol d	cions have device oth	Flush-Fl e been base her than a	ed on the He Hydro-Brake	ad/Discharge Optimum® be	relations utilised	over Head H ship for the then these	Range Hydro-Br storage r	- ake® Opti outing ca	4.0 imum as alculati	specifi ons wil	ll be	invalidat
another type of cont	trol d	cions have device oth	Flush-Fl e been base her than a Flow (1/s	ed on the He Hydro-Brake 5) Depth (m)	ad/Discharge Optimum® be Flow (l/s)	relations utilised	over Head I ship for the then these Flow (1/s)	Range Hydro-Br storage r Depth (m	- ake® Opti outing ca) Flow (1	4.0 imum as alculati	specifi ons wil	ll be	invalidat
another type of cont Depth (m) Flow (trol d	tions have device oth Depth (m)	Flush-Fl e been base her than a Flow (1/s 6.	ed on the He Hydro-Brake (5) Depth (m) 0 1.600	ad/Discharge Optimum® be Flow (1/s) 9.6	relations utilised Depth (m)	over Head I ship for the then these Flow (1/s) 12.0	Range Hydro-Br storage r Depth (m 5.00	- ake® Opti outing ca) Flow (1 0	4.0 imum as alculati 1/s) Deg	specifi ons wil	ll be	invalida (l/s)
another type of cont Depth (m) Flow (0.100	trol d (1/s) 4.0	tions have device oth Depth (m) 0.600 0.800 1.000	Flush-Fl e been base her than a Flow (1/s 6. 6. 7.	ed on the He Hydro-Brake (5) Depth (m) 0 1.600 9 1.800	ad/Discharge Optimum® be Flow (1/s) 9.6 10.1	relations utilised Depth (m) 2.600 3.000 3.500	over Head I ship for the then these Flow (1/s) 12.0 12.9 13.9	Range Hydro-Br storage r Depth (m 5.00 5.50 6.00	- ake® Opti outing ca) Flow (1 0 1 0 1 0 1	4.0 imum as alculati 1/s) Deg 16.4	specifi ons wil oth (m) 7.500	ll be	invalida (1/s) 20.2
another type of cont Depth (m) Flow (0.100 0.200 0.300 0.400	(1/s) 4.0 5.0 4.6 5.0	tions have device oth Depth (m) 0.600 0.800 1.000 1.200	Flush-Fl e been base her than a Flow (1/s 6. 6. 7. 8.	ed on the He Hydro-Brake 5) Depth (m) 0 1.600 9 1.800 7 2.000 3 2.200	ad/Discharge Optimum® be Flow (1/s) 9.6 10.1 10.6 11.1	relations utilised Depth (m) 2.600 3.000 3.500 4.000	over Head I ship for the then these Flow (1/s) 12.0 12.9 13.9 14.8	Range Hydro-Br storage r Depth (m 5.00 5.50 6.00 6.50	- ake® Opti outing ca) Flow (1 0 1 0 1 0 1 0 1 0 1	4.0 imum as alculati 1/s) Deg 16.4 17.3 18.0 18.8	specif: ons will pth (m) 7.500 8.000 8.500 9.000	ll be	invalida (1/s) 20.2 20.9 21.5 22.1
another type of cont Depth (m) Flow (0.100 0.200 0.300	trol d (1/s) 4.0 5.0 4.6	tions have device oth Depth (m) 0.600 0.800 1.000	Flush-Fl e been base her than a Flow (1/s 6. 6. 7. 8.	ed on the He Hydro-Brake (a) Depth (m) 0 1.600 9 1.800 2.000	ad/Discharge Optimum® be Flow (1/s) 9.6 10.1 10.6 11.1	relations utilised Depth (m) 2.600 3.000 3.500	over Head I ship for the then these Flow (1/s) 12.0 12.9 13.9 14.8	Range Hydro-Br storage r Depth (m 5.00 5.50 6.00 6.50	- ake® Opti outing ca) Flow (1 0 1 0 1 0 1 0 1 0 1	4.0 imum as alculati 1/s) Deg 16.4 17.3 18.0	specifi ons wil oth (m) 7.500 8.000 8.500	ll be	invalida (1/s) 20.2 20.9 21.5
another type of cont Depth (m) Flow (0.100 0.200 0.300 0.400	(1/s) 4.0 5.0 4.6 5.0	tions have device oth Depth (m) 0.600 0.800 1.000 1.200 1.400	Flush-Fl e been base her than a Flow (1/s 6. 6. 7. 8. 9.	ed on the He Hydro-Brake (a) Depth (m) 1.600 9 1.800 7 2.000 3 2.200 0 2.400	ad/Discharge Optimum® be Flow (1/s) 9.6 10.1 10.6 11.1 11.6	relations utilised Depth (m) 2.600 3.000 3.500 4.000 4.500	over Head I ship for the then these Flow (1/s) 12.0 12.9 13.9 14.8 15.6	Range Hydro-Br storage r Depth (m 5.00 5.50 6.00 6.50 7.00	- ake® Opti outing ca) Flow (1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	4.0 imum as alculati 1/s) Deg 16.4 17.3 18.0 18.8	specif: ons will pth (m) 7.500 8.000 8.500 9.000	ll be	invalidat (1/s) 20.2 20.9 21.5 22.1
another type of cont Depth (m) Flow (0.100 0.200 0.300 0.400	(1/s) 4.0 5.0 4.6 5.0	tions have device oth Depth (m) 0.600 0.800 1.000 1.200 1.400 <u>Hydr</u>	Flush-Fl e been base er than a Flow (1/s 6. 6. 7. 8. 9. 9. 50-Brake®	ed on the He Hydro-Brake (a) Depth (m) 0 1.600 9 1.800 7 2.000 3 2.200 0 2.400 Optimum Ma	ad/Discharge Optimum® be Flow (1/s) 9.6 10.1 10.6 11.1 11.6 anhole: S9,	relations utilised Depth (m) 2.600 3.000 3.500 4.000 4.500 DS/PN:	over Head I ship for the then these Flow (1/s) 12.0 12.9 13.9 14.8 15.6	Range Hydro-Br storage r Depth (m 5.00 5.50 6.00 6.50 7.00	- ake® Opti outing ca) Flow (1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	4.0 imum as alculati 1/s) Deg 16.4 17.3 18.0 18.8	specif: ons will pth (m) 7.500 8.000 8.500 9.000	ll be	invalida (1/s) 20.2 20.9 21.5 22.1
another type of cont Depth (m) Flow (0.100 0.200 0.300 0.400	(1/s) 4.0 5.0 4.6 5.0	tions have device oth Depth (m) 0.600 0.800 1.000 1.200 1.400 <u>Hydr</u> Unit Re	Flush-Fl e been base er than a Flow (1/s 6. 6. 7. 8. 9. 9. <u>co-Brake</u> eference M	ed on the He Hydro-Brake (a) Depth (m) 0 1.600 9 1.800 7 2.000 3 2.200 0 2.400 Optimum Ma	ad/Discharge Optimum® be Flow (1/s) 9.6 10.1 10.6 11.1 11.6 anhole: S9,	relations utilised Depth (m) 2.600 3.000 3.500 4.000 4.500 DS/PN:	over Head H ship for the then these Flow (1/s) 12.0 12.9 13.9 14.8 15.6 S1.006, Vc jective Min:	Range Hydro-Br storage r Depth (m 5.00 5.50 6.00 6.50 7.00 Dlume (m	- ake® Option outing ca b Flow (1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	4.0 imum as alculati 1/s) Deg 16.4 17.3 18.0 18.8 19.5	specif: ons will pth (m) 7.500 8.000 8.500 9.000	ll be	invalidat (1/s) 20.2 20.9 21.5 22.1
another type of cont Depth (m) Flow (0.100 0.200 0.300 0.400	(1/s) 4.0 5.0 4.6 5.0 5.5	tions have device oth Depth (m) 0.600 0.800 1.000 1.200 1.400 <u>Hydr</u> Unit Re Design E	Flush-Fl e been base er than a Flow (1/s 6. 6. 7. 8. 9. 9. <u>co-Brake</u> eference M Head (m)	ed on the He Hydro-Brake (a) Depth (m) 0 1.600 9 1.800 7 2.000 3 2.200 0 2.400 Optimum Ma	ad/Discharge Optimum® be Flow (1/s) 9.6 10.1 10.6 11.1 11.6 anhole: S9, 2500-0400-750 0.40	relations utilised Depth (m) 2.600 3.000 3.500 4.000 4.500 DS/PN: 00 Ob	over Head I ship for the then these Flow (1/s) 12.0 12.9 13.9 14.8 15.6 S1.006, Vc jective Mini- ication	Range Hydro-Br storage r Depth (m 5.00 5.50 6.00 6.50 7.00 Dlume (m	- ake® Option outing ca b Flow (1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	4.0 imum as alculati 1/s) Deg 16.4 17.3 18.0 18.8 19.5	specif: ons will pth (m) 7.500 8.000 8.500 9.000	ll be	invalidat (1/s) 20.2 20.9 21.5 22.1
another type of cont Depth (m) Flow (0.100 0.200 0.300 0.400	(1/s) 4.0 5.0 4.6 5.0 5.5	tions have device oth Depth (m) 0.600 0.800 1.000 1.200 1.400 <u>Hydr</u> Unit Re Design Flo	Flush-Fl e been base er than a Flow (1/s 6. 6. 7. 8. 9. co-Brake® eference M Head (m) pw (1/s)	ed on the He Hydro-Brake (a) Depth (m) 0 1.600 9 1.800 7 2.000 3 2.200 0 2.400 Optimum Ma	ad/Discharge Optimum® be Flow (1/s) 9.6 10.1 10.6 11.1 11.6 anhole: S9, 7500-0400-750 0.40 7.	relations utilised Depth (m) 2.600 3.000 3.500 4.000 4.500 DS/PN: 00 Ob 00 Appl 5 Sump Av	over Head H ship for the then these Flow (1/s) 12.0 12.9 13.9 14.8 15.6 S1.006, Vc jective Min: ication ailable	Range Hydro-Br storage r Depth (m 5.00 5.50 6.00 6.50 7.00 Dlume (m	- ake® Option outing ca b Flow (1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	4.0 imum as alculati 1/s) Deg 16.4 17.3 18.0 18.8 19.5 prage face Yes	specif: ons will pth (m) 7.500 8.000 8.500 9.000	ll be	invalidat (1/s) 20.2 20.9 21.5 22.1
another type of cont Depth (m) Flow (0.100 0.200 0.300 0.400	(1/s) 4.0 5.0 4.6 5.0 5.5	tions have device oth Depth (m) 0.600 0.800 1.000 1.200 1.400 <u>Hydr</u> Unit Re Design Flo	Flush-Fl e been base er than a Flow (1/s 6. 6. 7. 8. 9. 9. <u>co-Brake</u> eference M Head (m)	ed on the He Hydro-Brake (a) Depth (m) 0 1.600 9 1.800 7 2.000 3 2.200 0 2.400 Optimum Ma	ad/Discharge Optimum® be Flow (1/s) 9.6 10.1 10.6 11.1 11.6 anhole: S9, 2500-0400-750 0.40	relations utilised Depth (m) 2.600 3.000 3.500 4.000 4.500 DS/PN: 00 Ob 00 Appl 5 Sump Av	over Head H ship for the then these Flow (1/s) 12.0 12.9 13.9 14.8 15.6 S1.006, Vc jective Min: ication ailable	Range Hydro-Br storage r Depth (m 5.00 5.50 6.00 6.50 7.00 Dlume (m	- ake® Option outing ca b Flow (1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	4.0 imum as alculati 1/s) Deg 16.4 17.3 18.0 18.8 19.5	specif: ons will pth (m) 7.500 8.000 8.500 9.000	ll be	invalidat (1/s) 20.2 20.9 21.5 22.1

Pitman Associates	Ltd									Pa	ge 21
South Lodge											
Exminster											Constant of the
Devon EX6 8AT											Micro
Date 08/09/2019 19	:09				Designe	ed by Karl					Drainage
File Egley DL & Re	si comb	ined FTS	- no dr	ive ta	Checke	l by					Diamage
XP Solutions					Networ	2019.1					
		<u>Hydro-B</u>	rake® O	ptimum Ma	nhole: S	S9, DS/PN:	S1.006, Vo	lume (m³):	3.2		
				Invert Leve	al (m) 27	300 Suggest	ed Manhole I) iameter (mm)	1200		
		Minimum O		pe Diamete:		150 Suggest	ed Mannore I	Jamecer (mm)	1200		
		Control Poi	nts	Head (m)	Flow (1/	s) Cont	trol Points	Head (1	m) Flow (1	l/s)	
	Desigr	n Point (Cai	lculated)) 0.400	7	.5	Kick-	-Flo® 0.32	27	6.8	
		F	lush-Flo ^r	m 0.197	7	.5 Mean Flow	over Head H	Range	-	5.8	
Depth (m) Flow	(1/s) De	epth (m) Flo	ow (1/s)	Depth (m)	Flow (1/	s) Depth (m)	Flow (l/s)	Depth (m) F	low (l/s)	Depth (m)	Flow (l/s)
0.100	4.9	0.600	9.1						24.8		
0.200	7.5	0.800	10.4						26.1		
0.300 0.400	7.1 7.5	1.000 1.200	11.5 12.6						27.2 28.4		
0.500	8.3	1.200	12.0						20.4		
	I			1		I		I		1	
		<u>Hydro-Bra</u>	ake® Opt	timum Man	hole: S1	9, DS/PN:	S9.002, Vo	lume (m³):	234.2		
		Unit Refer	ence MD-	SHE-0060-2	000-1600-	2000		Sump Availab	ole Yes	3	
		Design Head	. ,		1	.600		Diameter (n	,		
	De	sign Flow (Flush-			Coloul	2.0		vert Level (Diameter (n	. ,		
				nimise ups				e Diameter (n			
		Applica				face			,0		

Pitman Associates Ltd								Page 2	2
South Lodge									
Exminster								~	-
Devon EX6 8AT								Mi	cro
Date 08/09/2019 19:09			Designed	by Karl					ainage
File Egley DL & Resi com	nbined FTS - no dri	ve ta		-					in lage
XP Solutions			Network 2	019.1					
	Hydro-Brake® Opt:	imum Manh	ole• 519.	DS/PN· S9	002. Volum	ne (m³)• 23	4 2		
	<u>nyaro brakce ope</u>		010. 010,	D0/111. 0 <i>9</i> .	002, VOIU		1.2		
	Control Points	Head (m)	Flow (l/s)	Control	l Points	Head (m)	Flow (l/s)		
Desi	gn Point (Calculated)	1.600	2.0		Kick-Fl	o® 0.536	1.2		
	Flush-Flo™	0.263	1.5	Mean Flow ov	ver Head Ran	ge –	1.5		
The hydrological calculat.	ions have been based of	on the Head]/Discharge	relationshir	o for the Hy	dro-Brake® (ptimum as s	specified.	Should
another type of control de									
									<i>(</i> 1 <i>(</i>)
Depth (m) Flow (l/s) I	Depth (m) Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) FI	Low (1/s) De	pth (m) Flow	(1/s) Dep	th (m) Flo	w (1/s)
0.100 1.3	0.600 1.3	1.600	2.0	2.600	2.5	5.000	3.4	7.500	4.1
0.200 1.5	0.800 1.5	1.800	2.1	3.000	2.7	5.500	3.5	8.000	4.2
0.300 1.5	1.000 1.6	2.000	2.2	3.500	2.9	6.000	3.7	8.500	4.3
0.400 1.5	1.200 1.8	2.200	2.3	4.000	3.0	6.500	3.8	9.000	4.4
0.500 1.3	1.400 1.9	2.400	2.4	4.500	3.2	7.000	4.0	9.500	4.6
	Hydro-Brake® Opt	timum Man	hole: S40	, DS/PN: S9	0.004, Volu	ume (m³): 2	.0		
			~~ ~~~ ~~~	0	0				
	Unit Reference MD-S Design Head (m)	HE-0070-20	00-0800-200 0.80			mp Available iameter (mm)	Yes 70		
	Design Flow (l/s)		2.			rt Level (m)			
	Flush-Flo™			d Minimum Ou			100		
	Objective Min	imise unst			-	iameter (mm)			
	Application	iiiiibe upbe	Surfac		a nannoic b	rumeter (mm)	1200		
	Control Points	Head (m)	Flow (l/s)	Control	l Points	Head (m)	Flow (l/s)		
Dooi	gn Point (Calculated)	0.800	2.0		Kick-Fl	o® 0.504	1.6		
Dest	Gli Polint (Calculated) Flush-Flo™			Mean Flow ov			1.0		
			I			-			
		0	01982-2019	Innovyze					

Pitman Associates Ltd		Page 23
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 08/09/2019 19:09	Designed by Karl	Drainage
File Egley DL & Resi combined FTS - no drive ta	Checked by	Diamage
XP Solutions	Network 2019.1	

Hydro-Brake® Optimum Manhole: S40, DS/PN: S9.004, Volume (m³): 2.0

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (l/s)										
0.100	1.8	0.600	1.8	1.600	2.7	2.600	3.4	5.000	4.7	7.500	5.6
0.200	2.0	0.800	2.0	1.800	2.9	3.000	3.7	5.500	4.9	8.000	5.8
0.300	2.0	1.000	2.2	2.000	3.0	3.500	3.9	6.000	5.1	8.500	6.0
0.400	1.9	1.200	2.4	2.200	3.2	4.000	4.2	6.500	5.3	9.000	6.2
0.500	1.6	1.400	2.6	2.400	3.3	4.500	4.4	7.000	5.5	9.500	6.3

Pitman Associates Ltd		Page 24
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 08/09/2019 19:09	Designed by Karl	Drainage
File Egley DL & Resi combined FTS - no drive ta	Checked by	Diamage
XP Solutions	Network 2019.1	
Stora	age Structures for Storm	
Porous Car H	Park Manhole: S2, DS/PN: S2.000	
Infiltration Coefficient Base (m/hr) Membrane Percolation (mm/hr) Max Percolation (l/s)	1000 Invert Level (m) 31.650 Depression Storage (mm) 1	
Safety Factor		
Porous Car B	Park Manhole: S9, DS/PN: S4.000	
Infiltration Coefficient Base (m/hr)		
	1000 Invert Level (m) 30.700 Depression Storage (mm) 1	
Max Percolation (1/s) Safety Factor	555.6 Width (m) 80.0 Evaporation (mm/day) 1 2.0 Length (m) 25.0 Membrane Depth (mm) 100	
Porous Car P	ark Manhole: S10, DS/PN: S5.000	
Infiltration Coefficient Base (m/hr)	0.00000 Porosity 0.30 Slope (1:X) 0.0	
	1000 Invert Level (m) 31.650 Depression Storage (mm) 1	
Max Percolation (l/s)		
Safety Factor	2.0 Length (m) 17.0 Membrane Depth (mm) 100	
<u>Cellular Sto</u>	rage Manhole: S7, DS/PN: S1.004	
Invert Level (m) 28. Infiltration Coefficient Base (m/hr) 0.00	600 Infiltration Coefficient Side (m/hr)0.00000 Porosity (000Safety Factor2.0).95
	©1982-2019 Innovyze	

Pitman Associates Ltd					Page 25
South Lodge					
Exminster					
Devon EX6 8AT					Mirco
Date 08/09/2019 19:09		Designed by Kar	L		Drainago
File Egley DL & Resi combined FTS -	• no drive ta	Checked by			Dramaye
XP Solutions		Network 2019.1			
	<u>Cellular Sto</u>	rage Manhole: S7	DS/PN: S1.004		
Depth (m) Area (m²) Inf.	Area (m²) Depth	(m) Area (m²) Inf.	Area (m ²) Depth (m)	Area (m²) Inf. A	rea (m²)
0.000 1300.0	0.0 1.3	200 1300.0	0.0 1.201	0.0	0.0
	<u>Cellular Sto</u>	rage Manhole: S8	, DS/PN: S1.005		
Inv Infiltration Coefficien Depth (m) Area (m²) Inf.	t Base (m/hr) 0.00	0000	Defficient Side (m/h Safety Fact	or 2.0	-
0.000 500.0		400 500.0	0.0 0.401		0.0
	Porous Car P	ark Manhole: S15	DS/PN: S8.000		
	cient Base (m/hr) rcolation (mm/hr) Percolation (l/s)	0.00000 Por 1000 Invert Leve 250.0 Widt	osity 0.30 l (m) 28.780 Depres h (m) 20.0 Eva	poration (mm/day)	1 1
Membrane Per	cient Base (m/hr) rcolation (mm/hr) Percolation (l/s) Safety Factor	0.00000 Por 1000 Invert Leve 250.0 Widt 2.0 Lengt	osity 0.30 1 (m) 28.780 Depres h (m) 20.0 Eva h (m) 45.0 Me	sion Storage (mm) poration (mm/day)	1 1
Membrane Per	cient Base (m/hr) rcolation (mm/hr) Percolation (l/s) Safety Factor	0.00000 Por 1000 Invert Leve 250.0 Widt	osity 0.30 1 (m) 28.780 Depres h (m) 20.0 Eva h (m) 45.0 Me	sion Storage (mm) poration (mm/day)	1 1
Membrane Per Max F	cient Base (m/hr) rcolation (mm/hr) Percolation (l/s) Safety Factor <u>Cellular Sto</u> rert Level (m) 27.	0.00000 Por 1000 Invert Leve 250.0 Widt 2.0 Lengt rage Manhole: S9 390 Infiltration Co	osity 0.30 1 (m) 28.780 Depres h (m) 20.0 Eva h (m) 45.0 Me	sion Storage (mm) poration (mm/day) mbrane Depth (mm) r) 0.00000 Porosi	1 1 100
Membrane Per Max F Inv	cient Base (m/hr) rcolation (mm/hr) Percolation (l/s) Safety Factor <u>Cellular Sto</u> rert Level (m) 27. t Base (m/hr) 0.00	0.00000 Por 1000 Invert Leve 250.0 Widt 2.0 Lengt rage Manhole: S9 390 Infiltration Co	osity 0.30 1 (m) 28.780 Depres h (m) 20.0 Eva h (m) 45.0 Me <u>, DS/PN: S1.006</u> pefficient Side (m/h Safety Fact	sion Storage (mm) poration (mm/day) mbrane Depth (mm) r) 0.00000 Porosi or 2.0	1 1 100 ty 0.95
Membrane Per Max F Inv Infiltration Coefficien	cient Base (m/hr) rcolation (mm/hr) Percolation (l/s) Safety Factor <u>Cellular Sto</u> rert Level (m) 27. t Base (m/hr) 0.00 . Area (m ²) Depth	0.00000 Por 1000 Invert Leve 250.0 Widt 2.0 Lengt rage Manhole: S9 390 Infiltration Co	osity 0.30 1 (m) 28.780 Depres h (m) 20.0 Eva h (m) 45.0 Me <u>, DS/PN: S1.006</u> pefficient Side (m/h Safety Fact	sion Storage (mm) poration (mm/day) mbrane Depth (mm) r) 0.00000 Porosi or 2.0 Area (m ²) Inf. A	1 1 100 ty 0.95

Pitman Associates Ltd		Page 26
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 08/09/2019 19:09	Designed by Karl	Drainage
File Egley DL & Resi combined FTS - no drive ta.		brainage
XP Solutions	Network 2019.1	
Manning's N 0.020 Infilt:	lular Storage Pipe: S9.000 ration Coefficient Base (m/hr) 0.00000 Safety Factor 2.0 ration Coefficient Side (m/hr) 0.00000 Porosity 0.95	
Depth (m) Area (m²) Inf. Area (m²) Dept	ch (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Ar	rea (m²)
0.000 225.0 0.0	0.800 225.0 0.0 0.801 0.0	0.0
Cel	lular Storage Pipe: S9.001	
5	ration Coefficient Base (m/hr) 0.00000 Safety Factor 2.0 ration Coefficient Side (m/hr) 0.00000 Porosity 0.95	
Depth (m) Area (m²) Inf. Area (m²) Dept	ch (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Ar	cea (m²)
0.000 300.0 0.0	0.800 300.0 0.0 0.801 0.0	0.0
Cel	lular Storage Pipe: S9.002	
2	ration Coefficient Base (m/hr) 0.00000 Safety Factor 2.0 ration Coefficient Side (m/hr) 0.00000 Porosity 0.95	
Depth (m) Area (m²) Inf. Area (m²) Dept	ch (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Ar	cea (m²)

Pitman As	ssocia	ates Ltd										Pa	age 27	
outh Loo	lge													
xminste	2												-	
evon EX	K6 8A1	1											Micro	- Maria
ate 08/0)9/201	9 19:09				Designe	d by Karl	<u> </u>					a second second second second second	
'ile Egle	ey DL	& Resi con	mbined 1	FTS – no	o drive ta	. Checked	by						Drainage	
KP Solut	lons					Network	2019.1							
			Sui	mmary o	f Critical F	esults by	Maximum	Level (H	Rank 1)	for Stor	<u>m</u>			
						Simulati	on Criteri	.a						
					Manhole Hea		, ,				t Coeffi			
	Aı	real Reducti	on Facto. 1rt (mins		Foul Sewa Additional Fl				ow per B	erson per D	ay (1/pe	r/day)	0.000	
		Hot Start I		,		or * 10m³/h								
				-			5-							
			-		ographs 0 Nu						5			
		Nui	mber of (Online Co	ontrols 5 Numb	per of Stor	age Structi	ures 10 N	umber o	f Real Time	Controls	s ()		
			Maro	gin for 1	Flood Risk War	ning (mm)	300.0 DTS S	Status Oi	N Inert	ia Status Ol	FF			
				5		Timestep								
				Profile	(s)					Summer	and Win	ter		
			Duratio	n(s) (mi	ns) 15,	30, 60, 12	0, 180, 240), 360, 48	80, 600,	720, 960,	1440, 21	60,		
		5.1			``			2880,	4320, 5	5760, 7200,				
		Retur		l(s) (yea Change							1,	100 40		
			CIIMate	Change	())						Ο,	40		
									Water	Surcharged	Flooded			Pipe
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow		Depth		Flow /	Overflow	-
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.	(l/s)	(1/s)
S1.000	S1	15 Summer	100	+40%					30.905	-0.245	0.000	0.43		161.3
S1.001	S2			+40%	100/15 Summer				30.771		0.000			328.9
S2.000		60 Summer							31.752					58.
S1.002	S2				100/15 Summer				30.195					330.
S1.003	53	1440 Summer	c 100	+40%	100/15 Summer				29.858	0.308	0.000	0.12		37.5
						©1982-20								

Pitman Associates Ltd				Page 28	
South Lodge Exminster				· · · · ·	
Devon EX6 8AT				Micro	
Date 08/09/2019 19:09	Design	ned by Kar	1	Drainad	10
File Egley DL & Resi combined FTS - no drive ta	Checke	ed by		Dialita	Je
XP Solutions	Netwo:	rk 2019.1		· · · · · ·	
	US/MH				
PN	Name		Level Exceeded		
PN S1.000	Name	Status			
	Name S1	Status			
S1.000 S1.001 S2.000	Name S1 S2 S2	Status OK SURCHARGED FLOOD RISK			
\$1.000 \$1.001 \$2.000 \$1.002	Name) \$1 . \$2 . \$2 . \$2	Status OK SURCHARGED FLOOD RISK SURCHARGED			
S1.000 S1.001 S2.000	Name) \$1 . \$2 . \$2 . \$2	Status OK SURCHARGED FLOOD RISK			

Pitman Associates Ltd		Page 29
South Lodge		
Exminster		New Market
Devon EX6 8AT		Mirco
Date 08/09/2019 19:09	Designed by Karl	Drainage
File Egley DL & Resi combined FTS - no drive ta	Checked by	Diamacle
XP Solutions	Network 2019.1	1

Summary of Critical Results by Maximum Level (Rank 1) for Storm

	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow
PN	Name	Storm		Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)
s3.000	S3	15 Summer	100	+40%					31.392	-0.058	0.000	0.71		333.9
S3.001	S3	15 Summer	100	+40%	100/15 Summer				30.627	0.777	0.000	1.23		381.2
S3.002	S4	15 Summer	100	+40%	100/15 Summer				30.025	0.575	0.000	2.59		461.7
S4.000	S 9	60 Summer	100	+40%					30.819	-0.106	0.000	0.55		34.7
S5.000	S10	30 Summer	100	+40%					31.717	-0.083	0.000	0.41		22.4
S1.004	S7	1440 Summer	100	+40%	1/120 Summer				29.800	1.050	0.000	0.10		5.2
S6.000	S12	30 Summer	100	+40%					29.788	-0.137	0.000	0.33		61.5
S1.005	S8	2880 Summer	100	+40%	100/60 Summer				28.297	0.247	0.000	0.11		5.0
S7.000	S11	15 Summer	100	+40%					28.117	-0.108	0.000	0.54		37.2
S8.000	S15	30 Summer	100	+40%					28.846	-0.084	0.000	0.40		26.1
S1.006	S9	480 Summer	100	+40%	100/30 Summer				27.775	0.160	0.000	0.29		7.4
S1.007	S17	60 Winter	100	+40%					27.371	-0.144	0.000	0.28		7.4
S1.008	S18	360 Summer	100	+40%					27.283	-0.142	0.000	0.30		7.4
S9.000	S1	7200 Summer	100	+40%					28.376	-0.525	0.000	0.00		11.8
S10.000	S3	15 Summer	100	+40%					29.874	-0.151	0.000	0.24		38.0
S11.000	S5	15 Summer	100	+40%					29.880	-0.145	0.000	0.28		43.9
S12.000	S8	15 Summer	100	+40%					29.678	-0.147	0.000	0.26		38.0
S13.000	S9	15 Summer	100	+40%					29.678	-0.147	0.000	0.26		38.7
S9.001	S10	7200 Summer	100	+40%					28.376	-0.325	0.000	0.00		6.4
S14.000	S13	15 Summer	100	+40%					28.979	-0.146	0.000	0.27		39.5
S15.000	S12	15 Summer	100	+40%					28.981	-0.144	0.000	0.28		40.9
S16.000	S14	15 Summer	100	+40%					28.485	-0.140	0.000	0.31		33.5
S17.000	S15	15 Summer	100	+40%					28.491	-0.134	0.000	0.34		37.2
S9.002	S19	7200 Summer	100	+40%	100/15 Summer				28.376	0.375	0.000	0.00		2.1
S9.003	S38	600 Summer	100	+40%					27.563	-0.062	0.000	0.19		2.2
						©1982-20	19 Innovy	ze						

Pitman Associates Ltd		Page 30
South Lodge		
Exminster		
Devon EX6 8AT		Mirco
Date 08/09/2019 19:09	Designed by Karl	Dcainado
File Egley DL & Resi combined FTS - no drive ta	Checked by	Diamacje
XP Solutions	Network 2019.1	

Summary of Critical Resu	ults b	y Maximum	Level (Rank 1) for Storm
	US/MH	6 b c b c c c c c c c c c c	Level
PN	Name	Status	Exceeded
\$3.000	s3	OK	
\$3.001		SURCHARGED	
\$3.002	S4	SURCHARGED	
S4.000	S9	FLOOD RISK	
\$5.000	S10	FLOOD RISK	
S1.004	S7	SURCHARGED	
S6.000	S12	FLOOD RISK	
S1.005	S8	SURCHARGED	
\$7.000	S11	OK	
S8.000	S15	FLOOD RISK	
S1.006	S9	SURCHARGED	
S1.007	S17	OK	
S1.008	S18	OK	
\$9.000	S1	OK	
S10.000	S3	OK	
S11.000	S5	OK	
S12.000	S8	OK	
S13.000	S9	OK	
\$9.001	S10	OK	
S14.000	S13	OK	
S15.000	S12	OK	
S16.000	S14	OK	
S17.000	S15	OK	
\$9.002	S19	SURCHARGED	
	982-2	019 Innov	176

Pitman Associates Ltd		Page 31
South Lodge		
Exminster		
Devon EX6 8AT		Mirro
Date 08/09/2019 19:09	Designed by Karl	– Micro Drainage
File Egley DL & Resi combined FTS - no drive ta		Dramaye
XP Solutions	Network 2019.1	
Summary of Critical Re	sults by Maximum Level (Rank 1) for Storm	
PN	US/MH Level Name Status Exceeded	
\$9.0	03 S38 OK	
	©1982-2019 Innovyze	

ertuman Asa	sociat	es Ltd											age 32	
South Lode	ge													
Exminster														11.000
Devon EX(6 8AT												Mirco	
Date 08/09	9/2019	19:09				Designe	ed by Kar	1					Dcain	
File Egley	y DL &	Resi cor	nbined	FTS - n	o drive ta	. Checked	d by						Drain	aye
XP Solutio	ons					Networł	k 2019.1							
			Su	ummary o	f Critical R	esults by	y Maximum	Level (Rank 1)) for Stor	<u>m</u>			
							<u>.</u>	· · · ·	Water	Surcharged	Flooded			Pipe
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Flow
PN	US/MH Name	Storm	Return				<u>.</u>	· · · ·	Water	Surcharged	Flooded		Overflow (1/s)	-
PN S18.000	Name	Storm 15 Summer	Return Period	Climate Change	First (X)	First (Y)	First (Z)	Overflow	Water Level	Surcharged Depth (m)	Flooded Volume	Flow / Cap.	(l/s)	Flow

	US/MH			Level
PN	Name	Stat	cus	Exceeded
S18.000		FLOOD		
S9.004	S40	FLOOD	RISK	

Pitman Associates Ltd				Page 33
South Lodge				
Exminster				New York
Devon EX6 8AT				Micro
Date 08/09/2019 19:09	Designed by Kar	1		the second s
File Egley DL & Resi combined FTS - no drive	ta Checked by			Drainage
XP Solutions	Network 2019.1			
Di	scharge Wizard Result	s for Storm		
<u></u>	bonarge willara nobare	<u>o ioi bcoim</u>		
	Summary			
	Discharge Rates Check	- Pass		
	Discharge Rates check	- rass		
	Discharge Volumes Chec	k - Fail		
	Minimal Discharge Check	- Not Run		
	Minimai Discharge check	Not Rull		
	Discharge Rates Ch	leck		
PN RP(yrs)/ CC(%) Pre-development	Post-development	Pass/Fail	
	Discharge Rate (l/s) I	Discharge Rate (l/s)		
1.008 lyr +0	8 6.4	5.5	Pass	
1.008 100yr +40		7.4	Pass	
9.004 1yr +0		2.0	Pass	
9.004 100yr +40	8 2.3	2.1	Pass	
	Discharge Volumes (Check		
PN Volume Cal	culation Pre-development	Post-development Pas	s/Fail	
Meth	od Volume (m ³)	Volume (m ³)		
1.008 Gr	eenfield 499.494	836.464	Fail	
9.004 Gr	eenfield 156.078	277.743	Fail	
(Pre-development runoff volume (exce	ept those marked with '*') for the 100 year, 3	360 minutes, Winter s	storm)
(Post-development runoff volume	for the 100 year, 360 mir	utes, Winter storm w	ith 0% climate chang	e)
	©1982-2019 Innov	vyze		

Pitman Associates Ltd		Page 34
South Lodge		
Exminster		
Devon EX6 8AT		Micro
Date 08/09/2019 19:09	Designed by Karl	Drainage
File Egley DL & Resi combined FTS - no drive ta	Checked by	Diamage
XP Solutions	Network 2019.1	
Discharg	ge Wizard Results for Storm	
	f the discharge volume test and so it is unlikely the system using a longer analysis time to allow the system to fully d	
	©1982-2019 Innovyze	
	eraoz-zora runozàze	

3. MicroDrainage printout for proposed drainage system – 100yr-6hr

Pitman Associates Ltd		Page 1
South Lodge		
Exminster		
Devon EX6 8AT		Mirro
Date 07/09/2019 19:15	Designed by Karl	Drainago
File Egley Existing.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length (m)	-	I.Area (ha)				Section Type	Auto Design
S1.000 S1.001	35.000 35.000				0.600		Pipe/Conduit Pipe/Conduit	

Network Results Table

PN	Rain (mm/hr)	•		Σ Base Flow (l/s)		-	
		 	0.046 0.046		0.0		

Pitman Associates Ltd	Page 2	
South Lodge		
Exminster		
Devon EX6 8AT		Mirro
Date 07/09/2019 19:15	Designed by Karl	Desinado
File Egley Existing.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	29.850	0.420	Open Manhole	1200	S1.000	29.430	150				
s2			Open Manhole		S1.001	27.800	150	s1.000	27.800	150	
S	27.980	0.830	Open Manhole	0		OUTFALL		S1.001	27.150	150	
			1		I			I			1

No coordinates have been specified, layout information cannot be produced.

Pitman Associates Ltd	Page 3
South Lodge	_
Exminster	·
Devon EX6 8AT	Mirco
Date 07/09/2019 19:15 Designed by Karl	MICLO
File Egley Existing.MDX Checked by	Drainage
XP Solutions Network 2019.1	
PIPELINE SCHEDULES for Storm	
<u>Upstream Manhole</u>	
PN Hyd Diam MH C.Level I.Level D.Depth MH MH DIAM., Sect (mm) Name (m) (m) (m) Connection (mm)	
S1.000o150S129.85029.4300.270OpenManholeS1.001o150S228.50027.8000.550OpenManhole	1200 1200
Downstream Manhole	
PN Length Slope MH C.Level I.Level D.Depth MH MH DIAM (m) (1:X) Name (m) (m) (m) Connection (mm	
\$1.00035.00021.5\$228.50027.8000.550Open Manhole\$1.00135.00053.8\$27.98027.1500.680Open Manhole	1200 0
Free Flowing Outfall Details for Storm	
Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m)	
S1.001 S 27.980 27.150 0.000 0 0	
©1982-2019 Innovyze	

FILMAN ASSOCT	iates Li	-d						Page	<u> </u>
South Lodge		- ~						L uge	
Exminster								2	
Devon EX6 87	٩.							N/B	a m
Date 07/09/20		15	Des	signed by	v Karl			Mi0	
File Egley Ex				ecked by	y narr			Dfa	inage
XP Solutions	ATSCTING.	, MDA		twork 201	1 9 1				
<u>l year Retu</u>	rn Peri	od Summaı	-	itical R or Storm	esults	by Maz	kimum I	Level (R	ank 1)
A Manhole He	Areal Red Hot Hot Sta eadloss C Number o Number o	Runoff Co luction Fac Start (mi crt Level coeff (Glok f Input Hy of Online of Offline	beff 0.750 ctor 1.000 .ns) 0 (mm) 0 oal) 0.500 drographs Controls	0 Addit: 0 Mi 0 Flow pe: 0 Number 0 Number	oul Sewa ional Fl ADD Fact r Person c of Sto: c of Time	ow - % or * 10 Inlet per Da rage St e/Area	of Tota)m ³ /ha S : Coeffi ay (l/pe ructure: Diagram	storage 2. ecient 0. er/day) 0. s 0 s 0	000 000 800
	Margin f	or Flood P 2	Analysis 1	ing (mm) 3 Fimestep 5 Status	Fine In				
Retu	n Period	Profile(: on(s) (mins d(s) (year: e Change (^s	s) 15, 7.	30, 60, 3 20, 960, 3		, 240, 60, 288	360, 48 30, 4320 00, 8640 1, 30,		
US/MH PN Name	Storm	Return C Period C		First (X) Surcharge			irst (Z) verflow		Water w Level (m)
	5 Summer 5 Summer			0/15 Summe 9/15 Summe					29.478 27.861
PN	US/MH Name	Surcharged Depth (m)		Flow / O Cap.			Status 1	Level Exceeded	
S1.00 S1.00		-0.102 -0.089	0.000			8.2 8.0	OK OK		

Pitman Associa	tes Lt	d						Page	5
South Lodge									
Exminster								1 C	
Devon EX6 8AT								Mic	
Date 07/09/201	9 19:1	.5	De	signed by	/ Karl			— MIC	
File Egley Exi	sting.	MDX		ecked by				Uld	inage
XP Solutions	2			twork 201	9.1				
30 year Return Volu Are Manhole Head Nun I Ni	umetric eal Red Hot Sta Aloss C mber of Number umber o	Runoff Co uction Fac Start (mi rt Level (oeff (Glob E Input Hy of Online of Offline or Flood R	ry of C1 <u>fc</u> <u>Simula</u> eff 0.75 tor 1.00 ns) mm) al) 0.50 drographs Controls Controls isk Warn nalysis	ritical F pr Storm tion Crite 0 Fc 0 Additi 0 MZ 0 Flow per 3 0 Number 3 0 Number 3 0 Number	eria oul Sewa onal Fl ADD Fact of Sto of Tim of Rea 600.0 Fine In	ige per .ow - % .or * 1(Inlet a per Da rage St e/Area 1 Time DVD S	hectare of Tota)m ³ /ha S : Coeffi ay (1/pe ructure: Diagram: Control: Status C	(1/s) 0. 1 Flow 0. torage 2. ecient 0. r/day) 0. s 0 s 0 s 0 s 0 s 0 s 0	000 000 000 300
Return	Period	n(s) (mins (s) (years Change (% Return Cl	7	30, 60, 1 20, 960, 1 First (X)	.440, 21	.60, 288 720	30, 4320 00, 8640 1, 30, 0, 0	, 5760, , 10080 99, 100 , 0, 40	Water Level
PN Name S	torm	Period C	hange	Surcharge	Flo	ood C	verflow	Act.	(m)
	Summer Summer	30 30		0/15 Summe 9/15 Summe					29.509 27.908
		Surcharged	Floodod			Pipe			
	US/MH	Depth		Flow / Ov	verflow	-		Level	
PN	Name	(m)	(m ³)		(1/s)		Status I	Exceeded	
S1.000	0.1	0 071	0.000	0 54		20.2	OV		
S1.000 S1.001	S1 S2	-0.071				20.2 19.7	OK OK		

Pitman Assoc	iates Lt	d						Page	6
South Lodge									
Exminster								· ·	
Devon EX6 8	BAT							Mice	
Date 07/09/2		5	Г	esiane	d by Ka	rl		- MICI	U
File Egley E				hecked	-			Urai	nage
XP Solutions					2019.1				
	Volumetric Areal Redu Hot Hot Stan Leadloss Co Number of	Runoff (action Fa Start (n rt Level beff (Glo Input H	Simu Coeff 0. actor 1. hins) (mm) obal) 0. ydrograp	for St lation (750 000 A 0 500 Flo hs 0 Nu	Orm Criteria Foul 3 dditiona MADD 3 w per Pe: mber of	Sewage p 1 Flow - Factor * In rson per Storage	er hectare % of Tota 10m³/ha St let Coeffic Day (1/per Structures	(1/s) 0.0 L Flow 0.0 corage 2.0 ecient 0.8 c/day) 0.0 0	00 00 00 00
	Number o	f Offlin	e Contro Risk Wan Analysis	ls 0 Nu rning (r s Timest	nm) 300.0	Real Tir) DV e Inerti	ea Diagrams ne Controls D Status O: a Status O:	0 FF	
Retu	ırn Period		ns) 1 rs)			180, 24 , 2160,	Summer and 0, 360, 480 2880, 4320, 7200, 8640, 1, 30, 9 0, 0,), 600, , 5760, , 10080	
US/MH PN Name		Return (Period					First (Z) Overflow		Water Level (m)
	15 Summer 15 Summer	99 99		100/15 99/15					29.523 28.032
PN		rcharged Depth (m)		Flow /	Overflor (1/s)		Status	Level Exceeded	
S1.000 S1.001		-0.057 0.082				26.1 24.8	OK SURCHARGED		
			01000		Innovyz				

South Lodge	ates Ltd					Page 7
2						
Exminster						Margaret .
Devon EX6 8A	Г					Micco
Date 07/09/202		Des	igned by Kar	.1		Micro
File Egley Ex:			cked by	-		Drainage
XP Solutions	15 CINY . MDA		work 2019.1			
			WOIR 2019.1			
100 year Retu	rn Period S		ritical Resul r Storm	lts by Ma	ximum Leve	el (Rank 1)
Ar Manhole Hea N	teal Reduction Hot Start Hot Start Lev adloss Coeff umber of Inpu Number of On	ff Coeff 0.750 h Factor 1.000 t (mins) 0 vel (mm) 0 (Global) 0.500 t Hydrographs line Controls	Additional MADD Fa Flow per Pers 0 Number of S 0 Number of T	Flow - % c actor * 10m Inlet son per Day torage Str ime/Area D	n³/ha Storad Coeffiecien y (l/per/day uctures 0 iagrams 0	ow 0.000 ge 2.000 nt 0.800
1	Number of Off	line Controls	U Number of R	.ea⊥ Time C	ontrols O	
Μ	Margin for Flo	-	ng (mm) 300.0 imestep Fine Status ON			
Returr		years)	30, 60, 120, 3 0, 960, 1440,	180, 240, 3 2160, 2880 7200		00, 60, 080 100
US/MH PN Name		rn Climate F od Change S				Water erflow Level act. (m)
			/15 Summer /15 Summer			29.635 28.447
	Surcharg	ged Flooded Volume Fl	ow / Overflow	Pipe	T	evel
	JS/MH Depth Name (m)		ap. (1/s)			eeded
	Name (m) S1 0.0	(m³) C	<pre>cap. (1/s) 0.89 1.33</pre>		tatus Exc OD RISK	
PN 1 S1.000	Name (m) S1 0.0	(m³) C	0.89	(l/s) S 33.0 FLO	tatus Exc OD RISK	

Pitman Associates Ltd		Page 8
South Lodge		
Exminster		
Devon EX6 8AT		Mirro
Date 07/09/2019 19:15	Designed by Karl	Drainago
File Egley Existing.MDX	Checked by	Diamacje
XP Solutions	Network 2019.1	

Discharge Wizard Results for Storm

Summary

Discharge Rates Check - Fail

Discharge Volumes Check - Not Run

Minimal Discharge Check - Not Run

Discharge Rates Check

PN	RP(yrs)/ CC(%)	Pre-development	Post-development	Pass/Fail
		Discharge Rate (l/s)	Discharge Rate (l/s)	
1.001	1yr +0%	1.0	8.0	Fail
1.001	30yr +0%	1.0	19.7	Fail
1.001	99yr +0%	1.0	24.8	Fail
1.001	100yr +40%	1.0	31.1	Fail

4. MicroDrainage printout for existing drainage system - 100year +40% rainfall event

Pitman Associates Ltd		Page 1
South Lodge		
Exminster		
Devon EX6 8AT		Mirro
Date 07/09/2019 19:15	Designed by Karl	Drainago
File Egley Existing.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length (m)	-	I.Area (ha)				Section Type	Auto Design
S1.000 S1.001	35.000 35.000				0.600		Pipe/Conduit Pipe/Conduit	

Network Results Table

PN	Rain (mm/hr)	•		Σ Base Flow (l/s)		-	
		 	0.046 0.046		0.0		

Pitman Associates Ltd		Page 2
South Lodge		
Exminster		
Devon EX6 8AT		Mirro
Date 07/09/2019 19:15	Designed by Karl	Desinado
File Egley Existing.MDX	Checked by	Diamage
XP Solutions	Network 2019.1	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	29.850	0.420	Open Manhole	1200	S1.000	29.430	150				
s2			Open Manhole		S1.001	27.800	150	S1.000	27.800	150	
S	27.980	0.830	Open Manhole	0		OUTFALL		S1.001	27.150	150	
			1		I			1			1

No coordinates have been specified, layout information cannot be produced.

©1982-2019 Innovyze

Pitman Associates Ltd	Page 3
South Lodge	_
Exminster	·
Devon EX6 8AT	Mirco
Date 07/09/2019 19:15 Designed by Karl	MICLO
File Egley Existing.MDX Checked by	Drainage
XP Solutions Network 2019.1	
PIPELINE SCHEDULES for Storm	
<u>Upstream Manhole</u>	
PN Hyd Diam MH C.Level I.Level D.Depth MH MH DIAM., Sect (mm) Name (m) (m) (m) Connection (mm)	
S1.000o150S129.85029.4300.270OpenManholeS1.001o150S228.50027.8000.550OpenManhole	1200 1200
Downstream Manhole	
PN Length Slope MH C.Level I.Level D.Depth MH MH DIAM (m) (1:X) Name (m) (m) (m) Connection (mm	•
\$1.00035.00021.5\$228.50027.8000.550Open Manhole\$1.00135.00053.8\$27.98027.1500.680Open Manhole	1200 0
Free Flowing Outfall Details for Storm	
Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m)	
S1.001 S 27.980 27.150 0.000 0 0	
©1982-2019 Innovyze	

FILMAN ASSOCT	iates Li	-d						Page	<u> </u>
South Lodge		- ~						L uge	
Exminster								2	
Devon EX6 87	٩.							N/B	a m
Date 07/09/20		15	Des	signed by	v Karl			Mi0	
File Egley Ex				ecked by	y narr			Dfa	inage
XP Solutions	ATSCTING.	, MDA		twork 201	1 9 1				
<u>l year Retu</u>	rn Peri	od Summaı	-	itical R or Storm	esults	by Maz	kimum I	Level (R	ank 1)
A Manhole He	Areal Red Hot Hot Sta eadloss C Number o Number o	Runoff Co luction Fac Start (mi crt Level coeff (Glok f Input Hy of Online of Offline	beff 0.750 ctor 1.000 .ns) 0 (mm) 0 oal) 0.500 drographs Controls	0 Addit: 0 Mi 0 Flow pe: 0 Number 0 Number	oul Sewa ional Fl ADD Fact r Person c of Sto: c of Time	ow - % or * 10 Inlet per Da rage St e/Area	of Tota)m ³ /ha S : Coeffi ay (l/pe ructure: Diagram	storage 2. ecient 0. er/day) 0. s 0 s 0	000 000 800
	Margin f	or Flood P 2	Analysis 1	ing (mm) 3 Fimestep 5 Status	Fine In				
Retu	rn Period	Profile(: on(s) (mins d(s) (year: e Change (^s	s) 15, 7.	30, 60, 3 20, 960, 3		, 240, 60, 288	360, 48 30, 4320 00, 8640 1, 30,		
US/MH PN Name	Storm	Return C Period C		First (X) Surcharge			irst (Z) verflow		Water w Level (m)
	5 Summer 5 Summer			0/15 Summe 9/15 Summe					29.478 27.861
PN	US/MH Name	Surcharged Depth (m)		Flow / O Cap.			Status 1	Level Exceeded	
S1.00 S1.00		-0.102 -0.089	0.000			8.2 8.0	OK OK		

Pitman Associa	tes Lt	d						Page	5
South Lodge									
Exminster								1 C	
Devon EX6 8AT								Mic	
Date 07/09/201	9 19:1	.5	De	signed by	/ Karl			— MIC	
File Egley Exi	sting.	MDX		ecked by				Uld	inage
XP Solutions	2			twork 201	9.1				
30 year Return Volu Are Manhole Head Num 1 Ni	umetric eal Red Hot Sta Aloss C mber of Number umber o	Runoff Co uction Fac Start (mi rt Level (oeff (Glob E Input Hy of Online of Offline or Flood R	ry of C1 <u>fc</u> <u>Simula</u> eff 0.75 tor 1.00 ns) mm) al) 0.50 drographs Controls Controls isk Warn nalysis	ritical F pr Storm tion Crite 0 Fc 0 Additi 0 MZ 0 Flow per 3 0 Number 3 0 Number 3 0 Number	eria oul Sewa onal Fl ADD Fact of Sto of Tim of Rea 600.0 Fine In	ige per .ow - % .or * 1(Inlet a per Da rage St e/Area 1 Time DVD S	hectare of Tota)m ³ /ha S : Coeffi ay (1/pe ructure: Diagram: Control: Status C	(1/s) 0. 1 Flow 0. torage 2. ecient 0. r/day) 0. s 0 s 0 s 0 s 0 s 0 s 0	000 000 000 300
Return	Period	n(s) (mins (s) (years Change (% Return Cl	7	30, 60, 1 20, 960, 1 First (X)	.440, 21	.60, 288 720	30, 4320 00, 8640 1, 30, 0, 0	, 5760, , 10080 99, 100 , 0, 40	Water Level
PN Name S	torm	Period C	hange	Surcharge	Flo	ood C	verflow	Act.	(m)
	Summer Summer	30 30		0/15 Summe 9/15 Summe					29.509 27.908
		Surcharged	Floodod			Pipe			
	US/MH	Depth		Flow / Ov	verflow	-		Level	
PN	Name	(m)	(m ³)		(1/s)		Status I	Exceeded	
S1.000	0.1	0 071	0.000	0 54		20.2	OV		
S1.000 S1.001	S1 S2	-0.071				20.2 19.7	OK OK		

Pitman Assoc	iates Lt	d						Page	6
South Lodge									
Exminster								· ·	
Devon EX6 8	BAT							Mice	
Date 07/09/2		5	Г	esiane	d by Ka	rl		- MICI	U
File Egley E				hecked	-			Urai	nage
XP Solutions					2019.1				
	Yolumetric Areal Redu Hot Hot Stan Leadloss Co Number of	Runoff (action Fa Start (n rt Level beff (Glo Input H	Simu Coeff 0. actor 1. hins) (mm) obal) 0. ydrograp	for St lation (750 000 A 0 500 Flo hs 0 Nu	Orm Criteria Foul 3 dditiona MADD 3 w per Pe: mber of	Sewage p 1 Flow - Factor * In rson per Storage	er hectare % of Tota 10m³/ha St let Coeffic Day (1/per Structures	(1/s) 0.0 L Flow 0.0 corage 2.0 ecient 0.8 c/day) 0.0 0	00 00 00 00
	Number o	f Offlin	e Contro Risk Wan Analysis	ls 0 Nu rning (r s Timest	nm) 300.0	Real Tir) DV e Inerti	ea Diagrams ne Controls D Status O: a Status O:	0 FF	
Retu	ırn Period		ns) 1 rs)			180, 24 , 2160,	Summer and 0, 360, 480 2880, 4320, 7200, 8640, 1, 30, 9 0, 0,), 600, , 5760, , 10080	
US/MH PN Name		Return (Period					First (Z) Overflow		Water Level (m)
	15 Summer 15 Summer	99 99		100/15 99/15					29.523 28.032
PN		rcharged Depth (m)		Flow /	Overflor (1/s)		Status	Level Exceeded	
S1.000 S1.001		-0.057 0.082				26.1 24.8	OK SURCHARGED		
			01000	0010	Innovyz				

South Lodge	ates Ltd					Page 7
2						
Exminster						Margaret .
Devon EX6 8A	Г					Micco
Date 07/09/202		Des	igned by Kar	.1		Micro
File Egley Ex:			cked by	-		Drainage
XP Solutions	15 CINY . MDA		work 2019.1			
			WOIR 2019.1			
100 year Retu	rn Period S		ritical Resul r Storm	lts by Ma	ximum Leve	el (Rank 1)
Ar Manhole Hea N	teal Reduction Hot Start Hot Start Lev adloss Coeff umber of Inpu Number of On	ff Coeff 0.750 h Factor 1.000 t (mins) 0 vel (mm) 0 (Global) 0.500 t Hydrographs line Controls	Additional MADD Fa Flow per Pers 0 Number of S 0 Number of T	Flow - % c actor * 10m Inlet son per Day torage Str ime/Area D	n³/ha Storad Coeffiecien y (l/per/day uctures 0 iagrams 0	ow 0.000 ge 2.000 nt 0.800
1	Number of Off	line Controls	U Number of R	.ea⊥ Time C	ontrols O	
Μ	Margin for Flo	-	ng (mm) 300.0 imestep Fine Status ON			
Returr		years)	30, 60, 120, 3 0, 960, 1440,	180, 240, 3 2160, 2880 7200		00, 60, 080 100
US/MH PN Name		rn Climate F od Change S				Water erflow Level act. (m)
			/15 Summer /15 Summer			29.635 28.447
	Surcharg	ged Flooded Volume Fl	ow / Overflow	Pipe	T	evel
	JS/MH Depth Name (m)		ap. (1/s)			eeded
	Name (m) S1 0.0	(m³) C	<pre>cap. (1/s) 0.89 1.33</pre>		tatus Exc OD RISK	
PN 1 S1.000	Name (m) S1 0.0	(m³) C	0.89	(l/s) S 33.0 FLO	tatus Exc OD RISK	

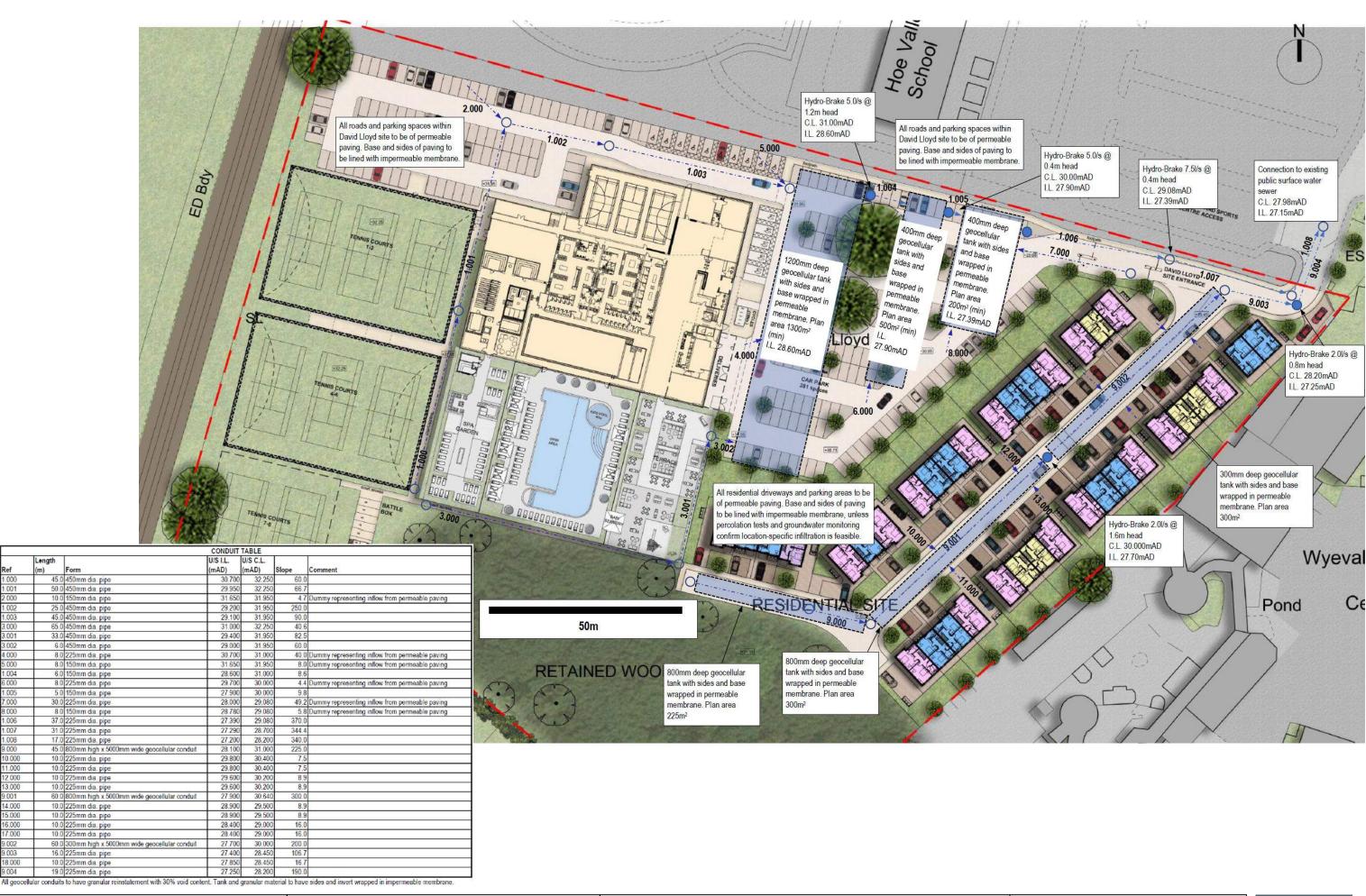
Pitman Associates Ltd		Page 8
South Lodge		
Exminster		
Devon EX6 8AT		Mirro
Date 07/09/2019 19:15	Designed by Karl	Drainago
File Egley Existing.MDX	Checked by	Diamacje
XP Solutions	Network 2019.1	

Discharge Wizard Results for Storm

Summary

Discharge Rates Check - Fail

Discharge Volumes Check - Not Run


Minimal Discharge Check - Not Run

Discharge Rates Check

PN	RP(yrs)/ CC(%)	Pre-development	Post-development	Pass/Fail
		Discharge Rate (l/s)	Discharge Rate (l/s)	
1.001	1yr +0%	1.0	8.0	Fail
1.001	30yr +0%	1.0	19.7	Fail
1.001	99yr +0%	1.0	24.8	Fail
1.001	100yr +40%	1.0	31.1	Fail

APPENDIX B DRAWINGS

SK100 Surface Water Layout SK101 Surface Water – Area Take-Off

Revisions A 07.09.2019 – Initial Issue	Project Nr	0394	CLIENT	Goldev	SOUTH LO
			PROJECT	Egley Road, Woking	EXMINST
	Drg Nr/Rev	SK100/A	DRG TITLE	Surface Water Drainage Layout	Telephor
	Status	Planning Issue	SCALE	As shown	Email: <u>ac</u> pitmana

Length

(m)

1.000

000

3 000

14.000

5 000

8 000

ODGE WLISH ROAD ER DEVON EX6 8AT

ne: +44(0)1392 824616 dmin@pitmanassociates.com associates.com

Revisions A 07.09.2019 – Initial Issue	Project Nr Drg Nr/Rev Status	0394 SK101/A Planning Issue	CLIENT PROJECT DRG TITLE SCALE	Goldev Egley Road, Woking Surface Water Drainage – Area Take-Off As shown	SOUTH LC OLD DAW EXMINSTE Telephon Email: <u>ad</u> pitmanas
---	------------------------------------	-----------------------------------	---	---	---

LODGE WLISH ROAD TER DEVON EX6 8AT

one: +44(0)1392 824616 admin@pitmanassociates.com associates.com

Wayne Gold Goldev Woking Ltd

JOMAS ASSOCIATES LTD

6-9 The Square Stockley Park Uxbridge UB11 1FW

Tel: 0843-289-2187 Fax: 0872-115-4505

www.jomasassociates.com info@jomasassociates.com

P1381J1459/AJH

27/06/2019

Dear Wayne,

EGLEY ROAD, WOKING, GU22 OAF: SOIL INFILTRATION TESTING

Jomas attended the above-mentioned site under instruction by Goldev Woking Ltd on 24th, 25th and 26th June 2019 to carry out soil infiltration testing in general accordance with BRE 365.

A full list of previous reports undertaken for the site by Jomas are detailed in Table 1 below:

Table 1: Previous Reports - Jomas

Title	Author	Reference	Date
Desk Study / Preliminary Risk Assessment		P1381J1459/TE	August 2018
Report For Land Adjacent To Egley Road Woking GU22 0NJ	Jomas Associates Ltd	Final V1.0	August 2018
Geo-environmental & Geotechnical		P1381J1549/AMM	11 April 2010
Assessment Ground Investigation Report for Egley Road, Woking, GU22 0AF	Jomas Associates Ltd	Final V1.0	11 April 2019
Supplementary Geo-environmental		P1381J1549/AMM	25 have 2010
Assessment Ground Investigation Report for Egley Road, Woking, GU22 0AF	Jomas Associates Ltd	Final V1.0	25 June 2019

During the previous work the predominant soil type encountered at site was reported as sand considered to represent the Bagshot Formation. However these were locally noted to be clays and is considered likely to either represent clay bands/pockets within the Bagshot Formation, or were recovered as such due to the percussive nature of the drilling equipment further disturbing the samples.

7No. pits (STP1 – STP7) were excavated using a mechanical excavator (positions shown on the exploratory hole location plan in Appendix 1). STP1, STP2, STP3, STP4, STP5, STP6 and STP7 were excavated to depths of 1.0mbgl, 1.0mbgl, 1.0mbgl, 2.4mbgl, 2.4mbgl, 2.4mbgl and 2.4mbgl respectively.

An additional pit was excavated (TP8) to aid in determining ground conditions and specifically to observe groundwater levels. (position shown on the exploratory hole location plan in Appendix 1). Slight dampness was noted at 3.70mbgl. The pit was left open for 35 minutes, no water ingress was noted before backfilling.

The pits were then filled with water and allowed to drain over time, with the water level measured at intervals. As prescribed by BRE 365 the water in the pit should be allowed to drain until the water falls to at least 25%. However due to time constraints this was not always possible, where significant drainage had occurred the time required to drain to 25% was extrapolated, however in a number of cases the drainage was noted to be insignificant even after being left to drain over night.

Some general instability was noted in STP5 due to ascribed dimensions within the granular substrate. Subsequent hole collapse occurred during the test.

All locations and pit dimensions were specified to the clients requirements.

Ground Conditions

Full logs of the ground conditions observed in each of the pits are included in Appendix 2, however, a summary of the ground conditions is provided below:

Table 2: Ground Conditions Encountered

Stratum and Description	Encountered from (m bgl)	Base of strata (m bgl)	Thickness range (m)
Grass over mid-brown sandy slightly gravelly CLAY with rootlets/cobble content. Sand is fine. Gravel consists of medium to coarse, rounded to well-rounded flint. Cobble consist of rounded flint/angular brick. (MADE GROUND / TOPSOIL).	0.0	0.35-0.50	0.35-0.50
Grey heavily mottled orange brown very silty / slightly gravelly/ SAND with occasional roots and rootlets down to 1.25mbgl. Sand is medium to coarse. Gravel consists of fine to coarse, rounded to well rounded flint. (BAGSHOT FORMATION).	0.35-0.50	>1.00 ->3.40	>0.65-3.40

Infiltration Testing Results

1No. test was conducted for STP1, STP3, STP5 and STP7, however each of these were deemed to be failed tests as "insufficient drainage" was noted in each of these locations, even though in an number of locations the tests ran over night.

1No. test carried out in each of STP4 and STP6 which reported infiltration rates of between

 6.15×10^{-7} m/s and 6.28×10^{-7} m/s respectively, which is indicative of "poor drainage" with "low permeability".

3No. tests were able to be completed in STP2 within the identified silty Sand stratum encountered from 0.35mbgl. The infiltration rates calculated from these tests in ranged between 5.66×10^{-6} m/s to 1.16×10^{-5} m/s

it is considered that the silty Sand in this area of the site has with "medium" to "poor" permeability with "good" to "poor" drainage conditions.

Although the material that the tests were undertaken in were described by the BGS and by the various phases of investigation by Jomas as a Sand, it is worth noting that the BGS classifies the Bagshot Formation as a "Solid deposit". It is therefore possible that the lower than would normally be expected infiltration results recorded could potentially be due to the sand grains being cemented together and as such reducing both the porosity and permeability of these materials.

The reduction in infiltration rate is likely due to the soil pore spaces reaching saturation point after the first test. Subsequent tests would indicate that water is unable to effectively permeate away from the soakage pit as soils become water logged.

We trust that this is satisfactory for your current needs, however please do not hesitate to contact the udnersigned if we can be of further assistance on either this or any other project.

Yours sincerely,

approved by

your

Adam Hines BSc (Hons) MSc

Geo-Environmental Engineer

Peter Swettenham BSc (Hons) MSc PgCert CEnv MIEnvSc

Principal Geotechnical Engineer

Enc.

Appendix 1 – Figures

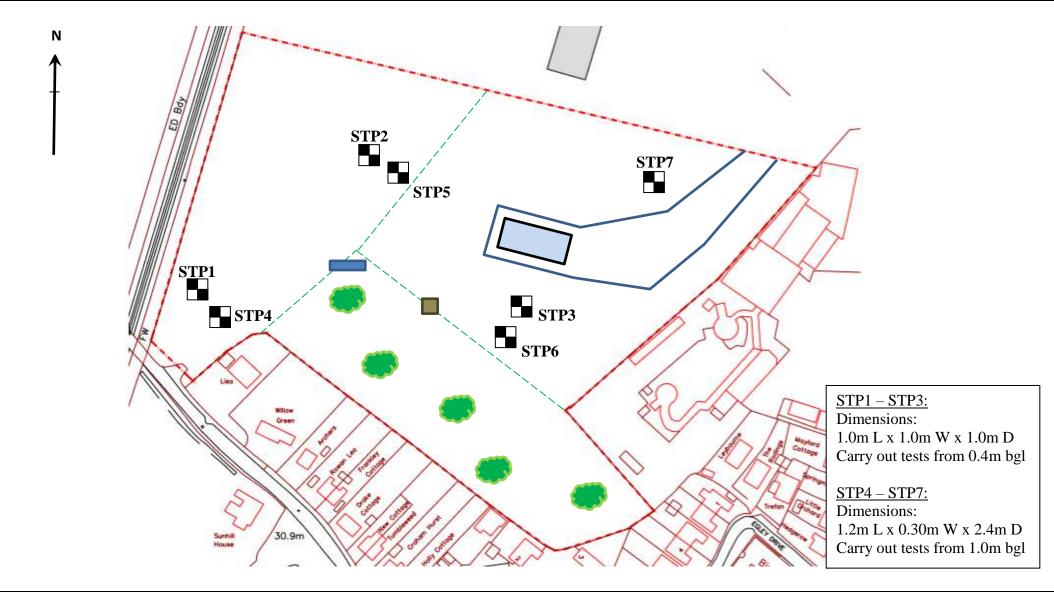
Appendix 2 – Exploratory Hole Logs

Appendix 3 – Infiltration Rates – Results and Calculations

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

APPENDIX 1 – FIGURES


JOMAS ASSOCIATES LTD T: 0843 289 2187

Project Name	Egley Road, Woking	Client	Goldev Woking Ltd
Project No.	P1381J1459	Date	15/08/2018
Title	Site Location Plan	Figure No	1

Project Name	Egley Road, Woking	Client	Goldev Woking Ltd
Project No.	P1381J1459	Date	June 2019
Title	Provisional Infiltration Testing Plan	Prepared By	AM

APPENDIX 2 – EXPLORATORY HOLE LOGS

		(10)11 - 0	8				TRI AL F	PIT RECORD
		JOMAS				Exploratory Ho	le No:	STP1
Site Address:		Egley Road, Woking, GU22 0AF				Project No:		P1381J1459
Client:		Goldev Woking Ltd JLW				Ground Level: Date Commend		24/07/2010
Logged By: Checked By:		PSw				Date Comment		24/06/2019 24/06/2019
Type and diame	ter of equipm					Sheet No:		1 Of 1
Pit Dimension:		Length: 1.80	Wid	th:	0.95		Depth:	1.00
Remarks	auto d							
1: No water rep 2: Infiltration te		t in general accorancce with BRE 365.						
3:		с С						
4:		Comple on Tooto			Ctrata			
Туре	Depth (mbgl)	Sample or Tests Result	Strata Depth (mbgl)	Water Strikes	-	Strata Description		
			0.00 —			(mbgl)	Grass over mid-bro	wn very sandy gravelly CLAY with low
			-		0.35		cobble content. Sai coarse, rounded to rounded flint. (TOP	nd is fine. Gravel consists of fine to well rounded flint. Cobble consist of SOIL).
			0.50 —				gravelly SAND. San of fine to coarse, ro	ed orange brown very silty slightly nd is medium to coarse. Gravel consists bunded to well rounded flint. (BAGSHOT
			-				FORMATION).	
			- 1.00 —		1.00			
			-	-				
			- 1.50 —	-				
			-					
			2.00 —	-				
			-					
			2.50 —					
			-	-				
			3.00 —	-				
			-					
			3.50 —	-				
			-					
			4.00 -					
			-					
			4.50 —					
			-					
			5.00 —					
		Sampling Code: U- Undisturbed B - Large Jomas Associates Ltd - La T: 0843 289 2187 E:	akeside House,	1 Furzegrour	d Way, St	ockley Park, UB	11 1BD	nple

							TRIAL PIT RECORD				
			JOMAS				Exploratory Ho	le No:	STP2		
Site Address:			Egley Road, Woking, GU22 0AF				Project No:		P1381J1459		
Client:			Goldev Woking Ltd				Ground Level: Date Commen		24/07/2010		
Logged By: Checked By:			JLW PSw				Date Complete		24/06/2019 24/06/2019		
Type and diame	ter of equipm	nent:	JCB 3CX Eco				Sheet No:		1 Of 1		
Pit Dimension:			Length: 1.70	Wid	th:	1.00		Depth:	1.10		
Remarks											
1: No water rep		ut in go	neral accorancce with BRE 365.								
3:	ests carried of	utinge	Teral accordincte with BRE 303.								
4:											
		Sam	ple or Tests	_		Strata		-			
Туре	Type Depth (mbgl) Result Dep (mbgl)								Strata Description		
				0.00		0.05		with frequent rootle	wn very sandy slightly gravelly CLAY ets. Sand is fine. Gravel consists of fine to well rounded flint. (TOPSOIL).		
				0.50 —	××.	0.35		Grey mottled orang occasional pockets (BAGSHOT FORMAT	e brown very silty SAND with of sand. Sand is medium to coarse.		
				-	× · · · × ·				inony.		
				1.00 —	××	1.10					
				-	<u></u>	1.10					
				1.50 —							
				-							
				2.00 —							
				-							
				2.50 —							
				3.00 —							
				-							
				3.50 —							
				4.00 -							
				4.50 —							
				4.50 -							
				5.00 —							
		Sa	ampling Code: U- Undisturbed B - Large E Jomas Associates Ltd - Lake T: 0843 289 2187 E: inf	eside House,	1 Furzegrour	d Way, St	ockley Park, UB	11 1BD	nple		

				23				TRIAL PIT RECORD				
			JOMAS				Exploratory Ho	ole No:	STP3			
Site Address:			Egley Road, Woking, GU22 0AF				Project No:		P1381J1459			
Client:			Goldev Woking Ltd				Ground Level:		25/0/ /2010			
Logged By: Checked By:			JLW PSw				Date Commen		25/06/2019 25/06/2019			
Type and diame	ter of equipn	nent:	JCB 3CX Eco				Sheet No:		1 Of 1			
Pit Dimension:			Length: 1.80	Wid	th:	0.95		Depth:	1.00			
Remarks												
1: No water rep		it in den	eral accorancce with BRE 365.									
3:		it in gen										
4:												
	Sample or Tests Strata							-				
Туре	Depth (mbgl)		Result		Legend	Depth (mbgl)			Strata Description			
				0.00 —				Grass over mid-bro	wn sandy gravelly clay with low cobble onal rootlets. Sand is fine. Gravel			
				_				consists of fine to c	oarse, angular to rounded flint and			
				-				Topsoil).	ist of angular brick. (MADE GROUND -			
				-		0.50						
				0.50 —	××.				mottled orange brown silty SAND with wood fragments and slight organic			
					x · . × · . x			odour. Sand is med	liu mto coarse. (BAGSHOT			
				-	××.	1		FORMATION).				
				1.00 —	x · . × . · . × . ·	1.00						
				-								
				-								
				-								
				1.50 —								
				-								
				_								
				-								
				2.00 —								
				-								
				-								
				_								
				2.50 —								
				-								
				-								
				_								
				3.00 —								
				-								
				_								
				_								
				3.50 —								
]							
				-								
				4.00 —	-							
				-								
				4.50 —								
					1							
				_								
				-								
				5.00 —	1							
								<u> </u>				
		Sa	ampling Code: U- Undisturbed B - Larg Jomas Associates Ltd - I	akeside House,	1 Furzegrour	nd Way, St	ockley Park, UB	11 1BD	nple			
			T: 0843 289 2187 E	: into@jomasas	sociates.com	vv: www.jo	urnasassociates.	com				

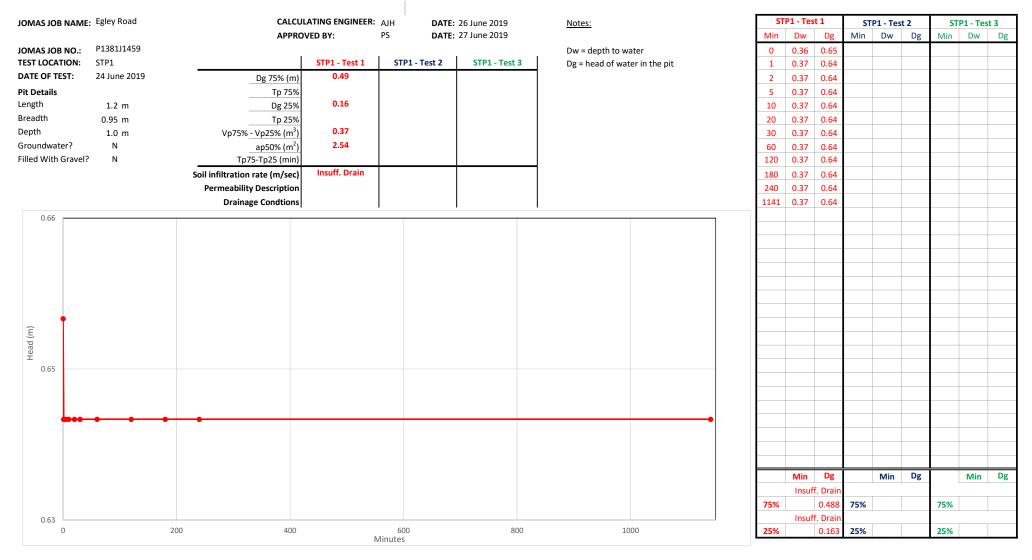
		TRIAL PIT RECORD					
	JOMAS				Exploratory Ho	le No:	STP4
Site Address:	Egley Road, Woking, GU22 0AF				Project No:		P1381J1459
Client:	Goldev Woking Ltd				Ground Level:		
Logged By:	JLW				Date Comment		24/06/2019
Checked By:	PSw				Date Complete	d:	24/06/2019
Type and diameter of equipment:	JCB 3CX Eco	100.00	M-	0.05	Sheet No:	Danth	1 Of 1
Pit Dimension: Remarks	Length: 1.60	Wid	tn:	0.35		Depth:	2.40
1: No water reported.							
2: Infiltration test carried out in gen	eral accorancce with BRE 365.						
3:							
4:	ple or Tests			Strata			
Type Depth (mbgl)	Result		Legend	Depth (mbgl)	Water Strikes	-	Strata Description
		0.00 —				frequent rootlets. S	wn sandy slightly gravelly CLAY with Sand is fine. Gravel consists of rounded
		_		0.35		flint. (TOPSOIL).	ge brown very silty SAND. Sand is
		0.50 —	××. ××.				(BAGSHOT FORMATION).
		-	× · · × ·				
		1.00 —	××. ××.				
		-	××.				
			× ×.				
		-	× ×.				
		2.00 —	× ×.				
		-	×. ×.				
		2.50 —		2.40			
		_					
		3.00 —					
		_					
		3.50 —					
		-					
		4.00 —					
		4.50 —					
		5.00 —					
Sa	mpling Code: U- Undisturbed B - Large Dis Jomas Associates Ltd - Lakesi T: 0843 289 2187 E: info	ide House,	1 Furzegroun	d Way, St	ockley Park, UB	11 1BD	nple

						PIT RECORD			
	JOMAS				Exploratory Ho	le No:	STP5		
Site Address:	Egley Road, Woking, GU22 0AF				Project No:		P1381J1459		
Client:	Goldev Woking Ltd				Ground Level:				
Logged By: Checked By:	JLW PSw				Date Comment Date Complete		24/06/2019 24/06/2019		
Type and diameter of equipment:	JCB 3CX Eco				Sheet No:	:u.	1 Of 1		
Pit Dimension:	Length: 1.70	Wid	lth:	0.32		Depth:	2.40		
Remarks							·		
1: No water reported.									
2: Infiltration test carried out in ge3:	neral accorancce with BRE 365.								
4:									
	nple or Tests			Strata					
Type Depth (mbgl)						th Strikes Strata Description gl) (mbgl)			
		0.00		0.40		frequent rootlets. S to coarse, rounded Grey mottled becor	wn sandy slightly gravelly CLAY with and is fine. Gravel consists of medium to well rounded flint. (TOPSOIL). ning slightly mottled orange brown very tty sitty SAND. Sand is medium to FORMATION).		
s	ampling Code: U- Undisturbed B - Large Di Jomas Associates Ltd - Lake T: 0843 289 2187 E: infr	side House,	1 Furzeground	d Way, St	ockley Park, UB	11 1BD	nple		
	1. 0040 207 2107 E. IIII	jonnasds	V						

			(PIT RECORD		
			JOMAS				Exploratory Ho	ble No:	STP6	
Site Address:			Egley Road, Woking, GU22 0AF				Project No:		P1381J1459	
Client:			Goldev Woking Ltd				Ground Level:			
Logged By:			JLW				Date Commen		25/06/2019	
Checked By: Type and diame	tor of oquipmo	nt:	PSw JCB 3CX Eco				Date Complete Sheet No:	ed:	25/06/2019 1 Of 1	
Pit Dimension:			Length: 1.80	Wie	dth:	0.35	Sheet No.	Depth:	2.43	
Remarks										
1: No water rep		In gon	eral accorancce with BRE 365.							
2: Infiltration te 3:	est carried out	in gene	eral accorancee with BRE 305.							
4:										
		Samp	ble or Tests			Strata		4		
Туре						Depth (mbgl)				
						0.45		with frequent rootle Gravel consists of f occasional angular Light brown to grey becoming slightly s	wn very sandy slightly gravelly clay ets and occasional roots. Sand is fine. ine to coarse, rounded flint with brick. (MADE GROUND - Topsoil). r mottled orange brown very silty ilty SAND with occasional roots and 25mbgl. Sand is medium to coarse. FION).	
				- 5.00 —	-					
		Sa	mpling Code: U- Undisturbed B - Large Jomas Associates Ltd - Lak T: 0843 289 2187 E: ii	eside House	, 1 Furzegrour	d Way, St	tockley Park, UB	11 1BD	nple	

								TRIAL PIT RECORD				
			JOMAS				Exploratory Ho	le No:	STP7			
Site Address:			Egley Road, Woking, GU22 0AF				Project No:		P1381J1459			
Client: Logged By:			Goldev Woking Ltd JLW				Ground Level: Date Commen		25/06/2019			
Checked By:							Date Complete		25/06/2019			
Type and diame	eter of equipm	nent:	JCB 3CX Eco				Sheet No:		1 Of 1			
Pit Dimension: Remarks			Length: 1.60	Wid	th:	0.35		Depth:	2.40			
1: No water rep	oorted.											
	est carried ou	t in gen	eral accorancce with BRE 365.									
3: 4:												
Sample or Tests Strata						Water	-					
Туре	Depth (mbgl)		Result	0.00	Legend	Depth (mbgl)	Strikes Strata Description					
				0.00 —				rootlets. Sand is fir	wn very sandy gravelly clay with ne. Gravel consists of fine to coarse,			
				-				angular to rounded Topsoil).	flint and brick. (MADE GROUND -			
				0.50 —	× . · . · × .	0.50		Light brown mottle	d becoming slightly mottled orange			
				-	$\cdot \cdot $			brown very silty be	coming slightly silty SAND. Sand is (BAGSHOT FORMATION).			
					× · · · × ·			medium to coarse.	UNUSHUTTURIVIATIUN).			
					x. ×. x.							
				1.00 —	××.							
				-	x × x.							
				-	××.							
				1.50 —	x · . × x.							
				-	××.							
				-	×···×·							
				_	· · · × · · · ·							
				2.00 —	×							
				-								
				_	× × .							
						2.40						
				2.50 —								
				-								
				_								
				3.00 —								
				-								
				_								
				3.50 —								
				-								
				4.00 -								
				-								
				-								
				-								
				4.50 —								
				-								
				5.00 —								
				5.00 -								
		Sa	ampling Code: U- Undisturbed B - Larg Jomas Associates Ltd - L T: 0843 289 2187 E:	akeside House,	1 Furzegrour	id Way, St	ockley Park, UB	11 1BD	nple			

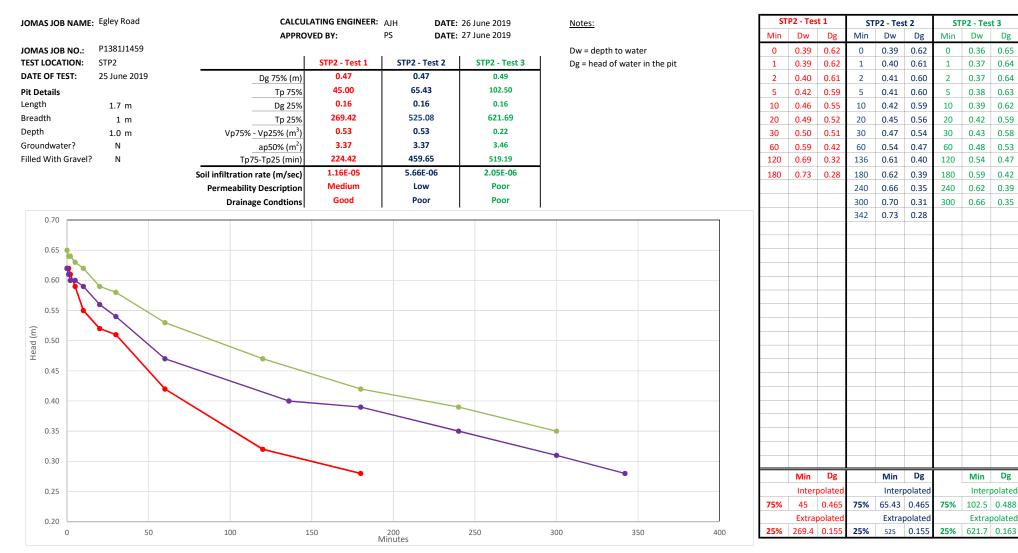
				TRIAL PIT RECORD						
		JOMAS				Exploratory Ho	le No:	TP8 - OBS		
Site Address:		Egley Road, Woking, GU22 0AF				Project No:		P1381J1459		
Client:		Goldev Woking Ltd				Ground Level:		0.1/0//0010		
Logged By:		JLW				Date Commen		24/06/2019		
Checked By: Type and diame	ter of equipm	ent: JCB 3CX Eco				Date Complete Sheet No:	:u.	24/06/2019 1 Of 1		
Pit Dimension:		Length: 2.00	Wid	th:	1.00	Sheet No.	Depth:	3.90		
Remarks					_					
		ghtly damp from ~3.70mbgl.								
	for 35mins an	nd no water seepage was noted. Monitoring well	nearby record	led water at ~	4.20mbgl					
3:										
4.		Sample or Tests			Strata					
Туре	Depth									
			0.00 —				Grass over mid-bro	wn very sandy slightly gravelly CLAY		
							with frequent rootle to coarse, rounded	ets. Sand is fine. Gravel consists of fine		
			_							
			0.50 —	· × . · . · × . ·	0.50		Light brown to grey	v mottled orange brown very silty		
				· · · × · · ·			SAND. Sand is med FORMATION).	lium to coarse. (BAGSHOT		
				· · · · · · · · · · · · · · · · · · ·						
				×						
			1.00 —	~ · · · · · · · · · · · · · · · · · · ·						
			-	· · · x · · · ·						
			-	X X. X · · X						
				(1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,						
			1.50 —	X · . · X.						
				××.						
				X · . ^X · . X.						
				××.						
			2.00 —	X · . ^X · . X.						
			2.00	××.						
				x · . × . · . × .						
				××.						
			-	x · . × . · . × .						
			2.50 —	·×.·.×.						
			_	x ×						
				× ×.						
				x ×	3.00					
			3.00 —		3.00			slightly mottled orange brown SAND.		
							Sand is medium to	coarse. (BAGSHOT FORMATION).		
			3.50 —							
			-	[::::::						
			_							
					3.90					
			4.00 —							
			-]						
			_							
			4.50 —							
			-	1						
			5.00 -							
		Sampling Code: U- Undisturbed B - Large Jomas Associates Ltd - La						nple		
		T: 0843 289 2187 E:								


APPENDIX 3 – INFILTRATION RATES – RESULTS AND CALCULATIONS

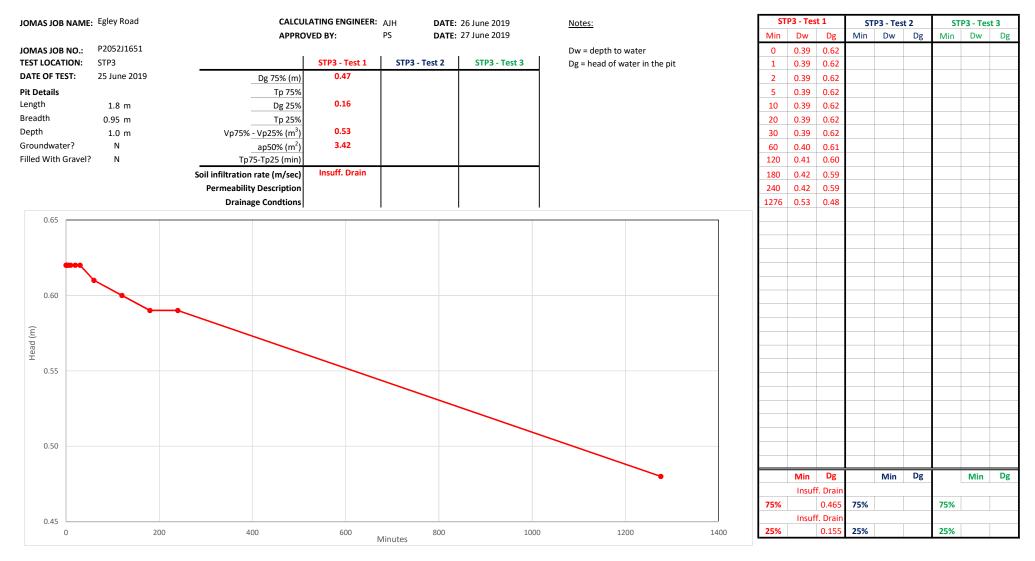
WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

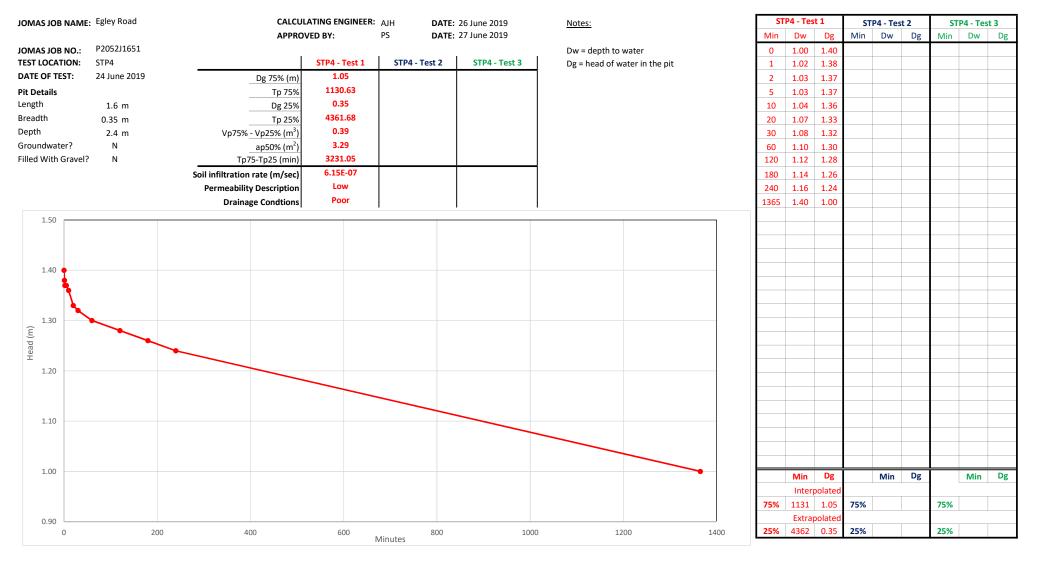
BRE 365 INFILTRATION TESTS



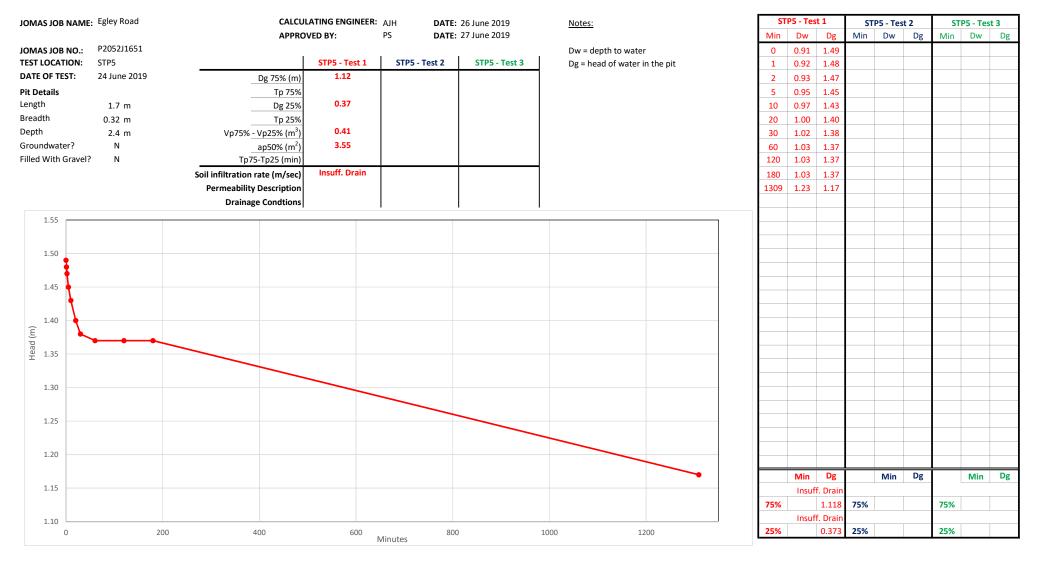
WE LISTEN, WE PLAN, WE DELIVER


Geotechnical Engineering and Environmental Services across the UK.

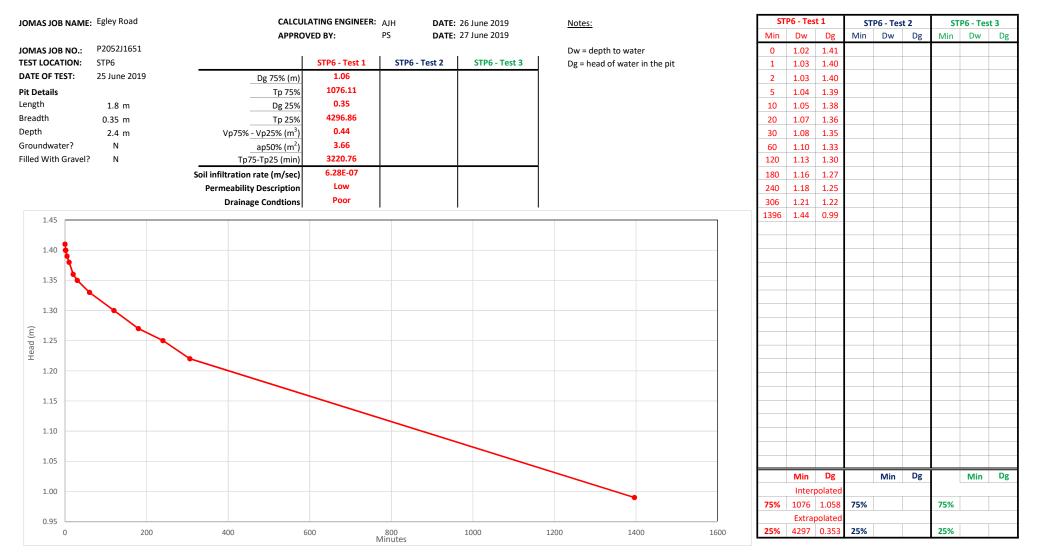
BRE 365 INFILTRATION TESTS



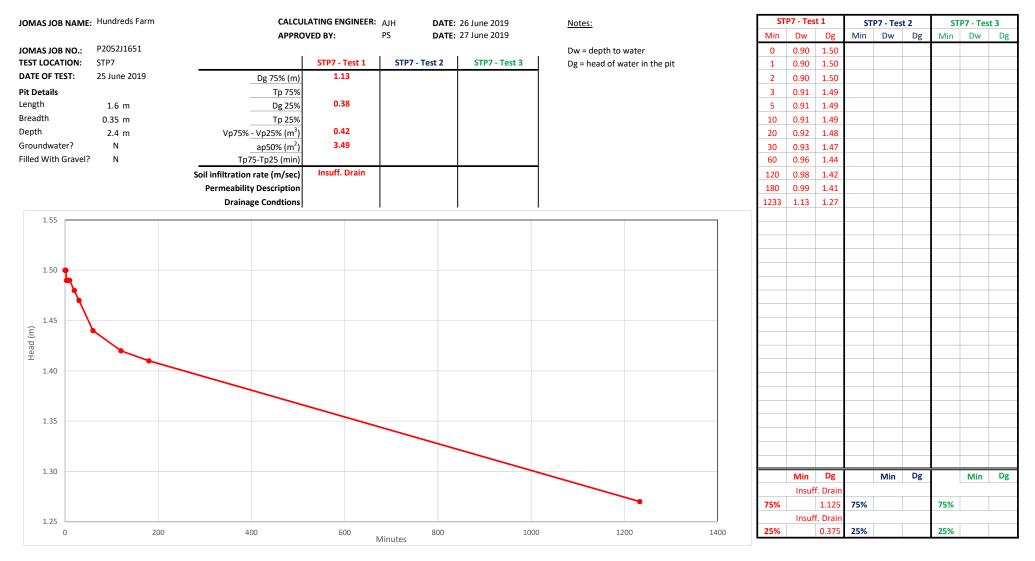
Geotechnical Engineering and Environmental Services across the UK.



Geotechnical Engineering and Environmental Services across the UK.



Geotechnical Engineering and Environmental Services across the UK.



Geotechnical Engineering and Environmental Services across the UK.

Geotechnical Engineering and Environmental Services across the UK.

Appendix D: Thames Water Sewer Records

Asset location search

Groundwise Searches Ltd Suite 8 Chichester House 45Chichester Road SOUTHEND ON SEA SS1 2JU

Search address supplied

Land At Egley Road Woking GU22 0PL

Your reference

23398DM

Our reference

ALS/ALS Standard/2019_3949964

Search date

8 February 2019

Keeping you up-to-date

Notification of Price Changes

From 1 September 2018 Thames Water Property Searches will be increasing the price of its Asset Location Search in line with RPI at 3.23%.

For further details on the price increase please visit our website: www.thameswater-propertysearches.co.uk Please note that any orders received with a higher payment prior to the 1 September 2018 will be non-refundable.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0845 070 9148

Search address supplied: Land At Egley Road, Woking, GU22 0PL

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

With regard to the fresh water supply, this site falls within the boundary of another water company. For more information, please redirect your enquiry to the following address:

Affinity Water Ltd Tamblin Way Hatfield AL10 9EZ Tel: 0845 7823333

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4WW, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB


Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

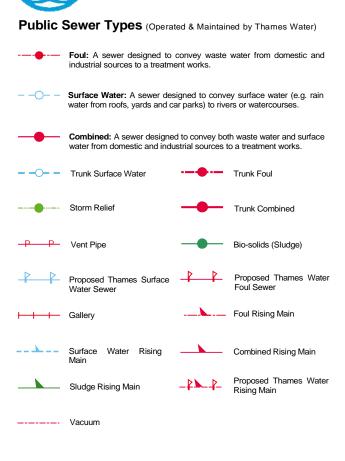
Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.


Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Manhole Reference	Manhole Cover Level	Manhole Invert Level	
4101	29.34	26.93	
5101	27.38	24.54	
311A	n/a	n/a	
3203	31.42	28.5	
3204	31.45	n/a	
3202	29.74	28.14	
5250	28.4	27.81	
5201	28.39	27.69	
6251	26.97	26.03	
6202	27.24	n/a	
6250	27.15	26.43	
5251	28.43	27.62	
421D	n/a	n/a	
5255	27.3	26.5	
421A	n/a	n/a	
421C	n/a	n/a	
5252	28.34	27.53	
321C	n/a	n/a	
421F	n/a	n/a	
5202	27.6	26.31	
421E	n/a	n/a	
5254	28.09	27.25	
321B	n/a	n/a	
421B	n/a	n/a	
321A	n/a	n/a	
5203	28.11	26.84	
6201	27.47	24.83	
5253	28.07	27.06	
521A	n/a	n/a	
3201	31.7	29.31	
6351	n/a	n/a	
6301	27.17	24.98	
shown but their presence should be antici		d the accuracy cannot be guaranteed. Service pipes are not y Thames Water for any error or omission. The actual position	

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

ALS Sewer Map Key

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

- Air Valve Dam Chase Fitting
- ≥ Meter

Π

0 Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

X Control Valve Ф Drop Pipe Ξ Ancillary Weir

Outfall

Inlet

Undefined End

End Items

いし

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

Other Symbols

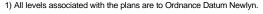
Symbols used on maps which do not fall under other general categories

- ****/ Public/Private Pumping Station
- * Change of characteristic indicator (C.O.C.I.)
- Ø Invert Level
- < Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement **Operational Site** :::::: Chamber Tunnel Conduit Bridge


Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

hames

Water

2) All measurements on the plans are metric.

- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Search Code

IMPORTANT CONSUMER PROTECTION INFORMATION

This search has been produced by Thames Water Property Searches, Clearwater Court, Vastern Road, Reading RG1 8DB, which is registered with the Property Codes Compliance Board (PCCB) as a subscriber to the Search Code. The PCCB independently monitors how registered search firms maintain compliance with the Code.

The Search Code:

- provides protection for homebuyers, sellers, estate agents, conveyancers and mortgage lenders who
 rely on the information included in property search reports undertaken by subscribers on residential
 and commercial property within the United Kingdom
- · sets out minimum standards which firms compiling and selling search reports have to meet
- promotes the best practise and quality standards within the industry for the benefit of consumers and property professionals
- enables consumers and property professionals to have confidence in firms which subscribe to the code, their products and services.

By giving you this information, the search firm is confirming that they keep to the principles of the Code. This provides important protection for you.

The Code's core principles

Firms which subscribe to the Search Code will:

- display the Search Code logo prominently on their search reports
- act with integrity and carry out work with due skill, care and diligence
- at all times maintain adequate and appropriate insurance to protect consumers
- conduct business in an honest, fair and professional manner
- handle complaints speedily and fairly
- ensure that products and services comply with industry registration rules and standards and relevant laws
- monitor their compliance with the Code

Complaints

If you have a query or complaint about your search, you should raise it directly with the search firm, and if appropriate ask for any complaint to be considered under their formal internal complaints procedure. If you remain dissatisfied with the firm's final response, after your complaint has been formally considered, or if the firm has exceeded the response timescales, you may refer your complaint for consideration under The Property Ombudsman scheme (TPOs). The Ombudsman can award compensation of up to £5,000 to you if the Ombudsman finds that you have suffered actual loss and/or aggravation, distress or inconvenience as a result of your search provider failing to keep to the code.

Please note that all queries or complaints regarding your search should be directed to your search provider in the first instance, not to TPOs or to the PCCB.

TPOs Contact Details

The Property Ombudsman scheme Milford House 43-55 Milford Street Salisbury Wiltshire SP1 2BP Tel: 01722 333306 Fax: 01722 332296 Web site: www.tpos.co.uk Email: admin@tpos.co.uk

You can get more information about the PCCB from www.propertycodes.org.uk

PLEASE ASK YOUR SEARCH PROVIDER IF YOU WOULD LIKE A COPY OF THE SEARCH CODE

Ms Melissa Seymour

RMA Environmental Ltd, Suite 4, Swallow Court, Devonshire Gate, Tiverton, Devon, EX16 7EJ Wastewater pre-planning Our ref DS6062019

24 July 2019

Pre-planning enquiry: Insufficient Capacity

Dear Melissa,

Thank you for providing information on your development.

Site: Land West of Egley Road, Woking, Surrey - GU22 0PS

Existing site: Greenfield. Proposed site: Houses (36 units) + Sports Hall (1,500 visitors/day). Proposed foul water discharge by gravity into manhole SU99565203. Proposed surface water discharge to nearby watercourse and not to Thames Water sewer.

We have completed the assessment of the foul water flows based on the information submitted in your application with the purpose of assessing sewerage capacity within the existing Thames Water sewer network.

Foul Water

We've assessed your **foul water** proposals and concluded that our sewerage network will not have enough capacity for your development at this time.

In order to ensure we make the appropriate upgrades – or 'off-site reinforcement' – to serve the remainder of your development, we'll need to carry out modelling work, design a solution and build the necessary improvements. This work is done at our cost.

Once we've begun modelling, we may need to contact you to discuss changing the connection point for capacity reasons. Please note that we'll pay the cost of covering any extra distance if the connection needs to be made at a point further away than the nearest practicable point of at least the same diameter.

How long could modelling and reinforcement take? Typical timescales for a development of your size are:

> Modelling: 8 months Design: 6 months Construction: 6 months **Total: 20 months**

If the time you're likely to take from planning and construction through to first occupancy is longer than this, we'll be able to carry out the necessary upgrades in time for your development. If it's shorter, please contact me on the number below to discuss the timing of our activities.

What do you need to tell us before we start modelling?

We're responsible for funding any modelling and reinforcement work. We need, though, to spend our customers' money wisely, so we'll only carry out modelling once we're confident that your development will proceed.

In order to have this confidence, we'll need to know that you **own the land and have either outline or full planning permission**. Please email this information to us as soon as you have it.

If you'd like us to start modelling work ahead of this point, we can do this if you agree to underwrite the cost of modelling and design. That means we'll fund the work – but you agree to pay the cost if you don't achieve first occupancy within five years..

If the modelling shows we need to carry out reinforcement work, then before we start construction we'll need you to supply us with notification that you've confirmed your F10 - Notification of construction project - submission to the Health and Safety Executive.

Surface Water

Please note that discharging surface water to the public sewer network should only be considered after all other methods of disposal have been investigated and proven to not be viable. In accordance with the Building Act 2000 Clause H3.3, positive connection to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable.

The disposal hierarchy being: 1st Soakaways; 2nd Watercourses; 3rd Sewers.

Only when it can be proven that soakage into the ground or a connection into an adjacent watercourse is not possible we would then consider a restricted discharge into the public surface water/combined sewer network. As a guide a discharge rate of 5 litres/second/Hectare will be use, in most instances, however more onerous constraints may be imposed to fit local circumstances. The system shall not show signs of flooding above ground for the worst 1 in 30-year storm and shall be tested for exceedance in a 1 in 100-year storm to demonstrate any flooding that may occur will not flood properties.

Thames Water Planning team would ask to see why it is not practicable on the site to restrict to Greenfield run-off rates if they are consulted as part of any planning application.

Please see the attached 'Planning your wastewater' leaflet for additional information.

What do I need to do next?

If you are satisfied with the points above, then you should compare your own timeline with the typical timescales we have suggested for our activities. If the time you're likely to take from planning and construction through to first occupancy is **more** than the total time we're likely to take, we'll be able to carry out the necessary upgrades in time for your development.

If it's **less** than this, you might want to ask us to start modelling earlier – in which case we'll require you to underwrite the cost, as noted above.

If you've any further questions, please contact me on 020 3577 7608

Yours sincerely

Zaid Kazi

Development Engineer Developer Services – Sewer Adoptions Team Thames Water