

WE LISTEN, WE PLAN, WE DELIVER Geotechnical Engineering and Environmental Services across the UK.

SUPPLEMENTARY GEO-ENVIRONMENTAL ASSESSMENT (GROUND INVESTIGATION) REPORT

EGLEY ROAD, WOKING, GU22 0AF

JOMAS ASSOCIATES LTD

6-9 The Square, Stockley Park, Uxbridge, UB11 1FW <u>www.jomasassociates.com</u> 0843-289-2187 <u>info@jomasassociates.com</u>

Geotechnical Engineering and Environmental Services across the UK.

Report Title:	Supplementary Geo-environmental Assessment Ground Investigation Report for Egley Road, Woking, GU22 0AF
Report Status:	Final v1.2

Job No: P1381J1459/AMM

Date: 21st November 2019

QUALITY CONTROL – PREVIOUS RELEASE

Version	Date	Issued By
Final v1.1	12th November 2019	AM
Final v1.0	25th June 2019	AM

Prepared by: JOMAS ASSOCIATES LTD For: WOKING FOOTBALL CLUB

Prepared by Alex Marcelo BSc (Hons), FGS Geotechnical Engineer

.....

Reviewed by Suneel Law BSc (Hons) MSc, FGS Principal Geo-environmental

Engineer

Should you have any queries relating to this report, please contact

JOMAS ASSOCIATES LTD

www.jomasassociates.com

0843 289 2187

info@jomasassociates.com

Geotechnical Engineering and Environmental Services across the UK

CONTENTS

Page

EX	ECUTIVE SUMMARY
1	INTRODUCTION
1.1	Terms of Reference4
1.2	Proposed Development4
1.3	Objectives4
1.4	Scope of Works5
1.5	Supplied Documentation5
1.6	Limitations5
2	SITE SETTING
2.1	Site Information7
2.2	Desk Study Overview (Jomas – August 2018)7
2.3	Ground Investigation Overview (Jomas – April 2019)8
3	GROUND INVESTIGATION
3.1	Rationale for Ground Investigation11
3.2	Scope of Ground Investigation11
3.3	Sampling Rationale12
3.4	Sampling Limitations13
3.5	Laboratory Analysis13
4	GROUND CONDITIONS
4.1	Soil15
4.2	Hydrogeology16
4.3	Physical and Olfactory Evidence of Contamination17
5	RISK ASSESSMENT – ANALYTICAL FRAMEWORK

Geotechnical Engineering and Environmental Services across the UK.

5.1	Context and Objectives18
5.2	Analytical Framework – Soils18
5.3	BRE19
5.4	Site Specific Criteria19
6	GENERIC QUANTITATIVE RISK ASSESSMENT
6.1	Screening of Soil Chemical Analysis Results – Human Health Risk Assessment
6.2	Volatile Organic Compounds23
6.3	Pesticides23
6.4	Asbestos in Soil24
6.5	Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth
6.6	Screening for Water Pipes24
6.7	Concrete in the Ground25
6.8	Waste Disposal25
0.0	
7	SOIL GAS RISK ASSESSMENT
7	SOIL GAS RISK ASSESSMENT
7 7.1	Soil Gas Results
7 7.1 7.2	Soil Gas Results
7 7.1 7.2 7.3	SOIL GAS RISK ASSESSMENT 26 Soil Gas Results 26 Screening of Results 26 GSV Calculation (Zone 1) 28
7 7.1 7.2 7.3 7.5	SOIL GAS RISK ASSESSMENT 26 Soil Gas Results 26 Screening of Results 26 GSV Calculation (Zone 1) 28 GSV Calculation (Zone 2) 30
7 7.1 7.2 7.3 7.5 7.6	SOIL GAS RISK ASSESSMENT26Soil Gas Results26Screening of Results26GSV Calculation (Zone 1)28GSV Calculation (Zone 2)30Gas Risk Assessment Summary30
7 7.1 7.2 7.3 7.5 7.6 8	SOIL GAS RISK ASSESSMENT26Soil Gas Results26Screening of Results26GSV Calculation (Zone 1)28GSV Calculation (Zone 2)30Gas Risk Assessment Summary30SUMMARY OF RESULTS31

APPENDICES

eotechnical Engineering and Environmental Services across the UK.

APPENDIX 1 – FIGURES

APPENDIX 2 – EXPLORATORY HOLE RECORDS

APPENDIX 3A - CHEMICAL LABORATORY TEST RESULTS (APRIL 2019)

APPENDIX 3B - CHEMICAL LABORATORY TEST RESULTS (JUNE 2019)

APPENDIX 4 – SOIL GAS MONITORING TEST RESULTS

EXECUTIVE SUMMARY

Woking Football Club commissioned Jomas Associates Ltd to undertake a Supplementary Geoenvironmental ground investigation at the site located at Egley Road, Woking, GU22 0AF.

The principle objectives of the study were as follows:

- To determine the nature and where possible, the extent of contaminants potentially present at the site;
- To establish the presence of significant pollutant linkages, in accordance with the procedures set out within the Environment Agency (EA) report R&D CLR11 and relevant guidance within the National Planning Policy Framework (NPPF);
- To assess whether the site is safe and suitable for the purpose for which it is intended, or can be made so by remedial action.

It should be noted that the table below is an executive summary of the findings of this report and is for briefing purposes only. Reference should be made to the main report for detailed information and analysis.

	Site History and Ground Investigation
Desk Study Overview	A Desk Study report has been produced for the site and issued separately (Jomas – August 2018). A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.
	A review of earliest available (1871) historical maps indicates that the site comprised undeveloped and/or agricultural land. On the plan dated 1897 the southern half of site is identified as a nursery. No other significant changes are noted from the historical plans. During the Jomas walkover development on site was noted as a new barn and access road within the north east corner.
	The site vicinity on the earliest available map comprised predominately agricultural land. A railway line is noted on the western boundary on the 1871 plan until modern day. The area of Mayford towards the south east shows residential buildings and a large garden centre directly east of site. During the Jomas walkover an off-site development identified as a large school and an electrical substation was noted to the north of site.
	The British Geological Survey indicates that the site is directly underlain by solid sand deposits of the Bagshot Formation. There are no superficial or artificial deposits within the site area.
	The solid deposits directly underlying the site are identified as a Secondary A Aquifer.
	There are no source protection zones within 500m of the site. There are no groundwater, surface water or potable water abstractions reported within 1km of the site. The nearest detailed river entry is reported 1949m east of the site, identified as an inland river.
	Recommendations of the preliminary risk assessment included an intrusive investigation. This was recommended to further assess the potential pollution linkages identified.

	Site History and Ground Investigation		
Previous Investigation Overview	A Ground Investigation report has been produced for the site and issued separately (Jomas – April 2019). A brief overview of the ground investigation findings is presented below. Reference should be made to the full report for detailed information.		
	The ground investigation was undertaken in two phases on 12th to 13th February and 06th to 7th March 2019, and consisted of the following:		
	 8No window sampling boreholes, drilled up to 5.45m below ground level (bgl), with associated in situ testing and sampling; 		
	 3No cable percussive boreholes, drilled up to 15.00m bgl, with associated in situ testing and sampling; 		
	 2No mechanically excavated trial pits, completed up to 1.50m bgl with associated sampling; 		
	 2No hand dug trial pits, completed up to 1.00m bgl with associated sampling; 		
	 5No combined soil gas and groundwater monitoring wells, targeted response zone within sand deposits; 		
	California Bearing Ratio tests completed at 5No exploratory hole locations;		
	 4No return visits to monitor ground gas concentrations and groundwater levels; 		
	 Laboratory analysis for chemical and geotechnical purposes. 		
	The results of the ground investigation revealed a ground profile comprising Topsoil and Made Ground over sand deposits considered to represent the Bagshot Formation.		
	During the intrusive works groundwater was reported in a singular exploratory hole WS9 as seepage at 0.40m bgl. Groundwater was not reported in any of the other exploratory holes during the intrusive investigation. 4No groundwater monitoring visits were undertaken between 14th March 2019 and 2nd April 2019. Groundwater strikes were reported between 1.78m and 3.94m bgl.		
	Following generic risk assessments, no elevated concentrations were detected in soils in excess of generic assessment criteria for the protection of human health within a residential with plant uptake end-use scenario. No asbestos fibres were detected in the samples analysed in the laboratory.		
	Risks to controlled waters were not considered to be significant. It was recommended that the water supply pipe requirements should be discussed at an early stage with the relevant utility provider.		
	It was considered that following gas monitoring, the wider site can be characterised as Characteristic Situation 1, where gas protection measures are not required. However, it was recommended that additional monitoring well installations be installed and subsequent return gas monitoring are recommended within the area of the former contractor's compound. The objective would to determine whether the concentrations of methane and carbon dioxide detected in WS2 are representative of this area, which would likely necessitate gas protection measures complying with a CS2 classification, or whether they are localised to the vicinity of WS2, in which case a CS1 classification would be considered appropriate.		
Intrusive Investigation	The ground investigation was undertaken on 17 May 2019, and consisted of the following:		

	Site History and Ground Investigation
	 4No windowless sampling boreholes, drilled up to 3.00m below ground level (bgl), with associated in situ testing and sampling;
	• 4No combined gas and groundwater monitoring wells, installed up to 3.00m bgl;
	Laboratory analysis for chemical purposes;
	• 4No. return visits to monitor ground gas concentrations and groundwater levels.
Ground Conditions	The ground investigations have identified two distinct zones of superficial soils, both overlying solid sand deposits considered to represent the Bagshot Formation.
	Groundwater was not reported in any of the exploratory holes during the investigation.
	During return site visits from 24 May 2019 to 10 June 2019 groundwater strike was reported between depths of 1.97m and 2.20m within the supplementary wells.
Environmental Considerations	In Zone 1 (as shown in Figure 4) superficial soils comprise Made Ground that includes a significant quantity of anthropogenic material, including brick and concrete. It is considered that the Made Ground on site is likely associated with the barn development within the north eastern part of site, and the former use as a contractor's compound as identified during the previous Desk Study (Jomas – August 2018). In Zone 2, an area of significant historic site developments, superficial soils comprised an organic soil comprising brown clay with roots and rootlets.
	No concentrations were detected in soils in excess of generic assessment criteria for the protection of human health within a residential with plant uptake end-use scenario.
	Asbestos fibres were reported in the form of chrysotile within a single sample of made ground from WSA, located in Zone 1 (as detailed in Section 4). The asbestos quantification results reported an asbestos content of below 0.1%, the fibre content at which arisings are considered hazardous for the purpose of disposal.
	Soft landscaping formed within areas of Made Ground located in Zone 1 should comprise a clean cover layer comprising 600mm imported clean topsoil /subsoil over a geotextile membrane. In areas where Made Ground does not exceed 600mm depth, the depth of ground removal can be limited at this depth, without the need for a geotextile membrane it can be uplifted and replaced with imported topsoil.
	Provision of a clean cover layer will not be required in Zone 2, from the proposed development plans provided this zone comprises the commercial leisure centre with associated car parking.
	Risks to controlled waters are not considered to be significant.
	Zone 1 will require gas protection measures providing a minimum of 3.5 protection points. From the proposed development plans provided the entire the residential development will require gas protection measures. This is supported by the CO2 concentrations detected in WS7, which lies within Zone 1 but close to the boundary with Zone 2.
	The proposed development plans indicate that the proposal within Zone 2 comprises car parking areas and the leisure centre facility. As this area has been classified as CS1, no gas protection measures are considered necessary in this area of site.
	A remedial strategy will be required for the proposed development.

1 INTRODUCTION

1.1 Terms of Reference

- 1.1.1 Woking Football Club ("The Client") has commissioned Jomas Associates Ltd, to assess the risk of contamination posed by the ground conditions at a site located at Egley Road, Woking, GU22 0AF, prior to redevelopment of the site.
- 1.1.2 To this end a Desk Study and Ground investigation report has been produced for the site and issued separately, followed by a supplementary intrusive investigation (detailed in this report).
- 1.1.3 A full list of previous reports undertaken for the site by Jomas are detailed in Table 1.1:

Title	Author	Reference	Date
Desk Study / Preliminary Risk Assessment Report for Egley Road, Woking, GU22 0AF	Jomas Associates Ltd	P1381J1459/AMM	17 August 2018
Geo-Environmental and Geotechnical Assessment (Ground Investigation) Report for Egley Road, Woking, GU22 0AF	Jomas Associates Ltd	P1381J1459/AMM	11 April 2019

Table 1.1: Previous Reports - Jomas

1.1.4The intrusive investigation was undertaken in accordance with Jomas proposal dated
08 May 2019.

1.2 Proposed Development

1.2.1 The proposed development comprises the following:

'Redevelopment of the site, following the demolition of the existing building, to provide a health club building (Class D2) incorporating an external swimming pool and tennis/sports courts, the provision of 36 dwelling houses (Class C3) up to a maximum of 3 storeys in height, associated landscaping and car parking and new vehicular access from an existing road servicing Hoe Valley School.'

- 1.2.2 For the purposes of the contamination risk assessment, the proposed development is classified as 'Residential with plant uptake'.
- 1.2.3 A plan of the proposed development is provided in Figure 3, Appendix 1.

1.3 Objectives

- 1.3.1 The objectives of Jomas' investigation were as follows:
 - To conduct an intrusive investigation, to determine the nature and extent of contaminants potentially present at the site;

• To establish the presence of significant pollutant linkages, in accordance with the procedures set out within Part IIA of the Environmental Protection Act 1990, associated statutory guidance and current best practice including the EA report R&D CLR 11.

1.4 Scope of Works

- 1.4.1 The following tasks were undertaken to achieve the objectives listed above:
 - Intrusive ground investigation to determine shallow ground conditions, and potential for contamination at the site;
 - Undertaking of laboratory chemical testing upon samples obtained;
 - The compilation of this report, which collects and discusses the above data, and presents an assessment of the site conditions, conclusions and recommendations.

1.5 Supplied Documentation

1.5.1 Jomas Associates were not supplied with any previously produced reports at the time of writing this report.

1.6 Limitations

- 1.6.1 Jomas Associates Ltd has prepared this report for the sole use of Woking Football Club in accordance with the generally accepted consulting practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon by any other party without the explicit written agreement of Jomas Associates Limited. No other third-party warranty, expressed or implied, is made as to the professional advice included in this report. This report must be used in its entirety.
- 1.6.2 The records search was limited to information available from public sources; this information is changing continually and frequently incomplete. Unless Jomas Associates Limited has actual knowledge to the contrary, information obtained from public sources or provided to Jomas Associates Limited by site personnel and other information sources, have been assumed to be correct. Jomas Associates Limited does not assume any liability for the misinterpretation of information or for items not visible, accessible or present on the subject property at the time of this study.
- 1.6.3 Whilst every effort has been made to ensure the accuracy of the data supplied, and any analysis derived from it, there may be conditions at the site that have not been disclosed by the investigation, and could not therefore be taken into account. As with any site, there may be differences in soil conditions between exploratory hole positions. Furthermore, it should be noted that groundwater conditions may vary due to seasonal and other effects and may at times be significantly different from those measured by the investigation. No liability can be accepted for any such variations in these conditions.

- 1.6.4 Any reports provided to Jomas Associates Limited have been reviewed in good faith. Jomas Associates Limited cannot be held liable for any errors or omissions in these reports, or for any incorrect interpretation contained within them.
- 1.6.5 This investigation and report has been carried out in accordance with the relevant standards and guidance in place at the time of the works. Future changes to these may require a re-assessment of the recommendations made within this report.
- 1.6.6 This report is not an engineering design and the figures and calculations contained in the report should be used by the Structural Engineer, taking note that variations may apply, depending on variations in design loading, in techniques used, and in site conditions. Our recommendations should therefore not supersede the Engineer's design.

2 SITE SETTING

2.1 Site Information

2.1.1 The site location plan is appended to this report in Figure 1, Appendix 1.

Name of Site	Land Adjacent to Egley Road	
Address of Site	Egley Road Woking GU22 OAF	
Approx. National Grid Ref.	499416 156437	
Site Area (Approx)	4.1ha	
Site Occupation	Unoccupied land with single barn	
Local Authority	Woking Borough Council	
Proposed Site Use	Demolition of existing builds for the construction of new buildings for commercial and residential use.	

2.2 Desk Study Overview (Jomas – August 2018)

- 2.2.1 A Desk Study report has been produced for the site and issued separately (Jomas August 2018). A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.
- 2.2.2 A review of earliest available (1871) historical maps indicates that the site comprised undeveloped and/or agricultural land. On the plan dated 1897 the southern half of site is identified as a nursery. No other significant changes are noted from the historical plans. During the Jomas walkover development on site was noted as a new barn and access road within the north east corner.
- 2.2.3 The site vicinity on the earliest available map comprised predominately agricultural land. A railway line is noted on the western boundary on the 1871 plan until modern day. The area of Mayford towards the south east shows residential buildings and a large garden centre directly east of site. During the Jomas walkover an off site development identified as a large school and an electrical substation was noted to the north of site.
- 2.2.4 The British Geological Survey indicates that the site is directly underlain by solid sand deposits of the Bagshot Formation. There are no superficial or artificial deposits within the site area.
- 2.2.5 The solid deposits directly underlying the site are identified as a Secondary A Aquifer.
- 2.2.6 There are no source protection zones within 500m of the site. There are no groundwater, surface water or potable water abstractions reported within 1km of the site. The nearest detailed river entry is reported 1949m east of the site, identified as an inland river.

2.2.7 Recommendations of the preliminary risk assessment included an intrusive investigation. This was recommended to further assess the potential pollution linkages identified.

2.3 Ground Investigation Overview (Jomas – April 2019)

- 2.3.1 A Ground Investigation report has been produced for the site and issued separately (Jomas – April 2019). A brief overview of the ground investigation findings is presented below. Reference should be made to the full report for detailed information.
- 2.3.2The ground investigation was undertaken in two phases on 12th to 13th February and
06th to 7th March 2019, and consisted of the following:
 - 8No window sampling boreholes, drilled up to 5.45m below ground level (bgl), with associated in situ testing and sampling;
 - 3No cable percussive boreholes, drilled up to 15.00m bgl, with associated in situ testing and sampling;
 - 2No mechanically excavated trial pits, completed up to 1.50m bgl with associated sampling;
 - 2No hand dug trial pits, completed up to 1.00m bgl with associated sampling;
 - 5No combined soil gas and groundwater monitoring wells, targeted response zone within sand deposits;
 - California Bearing Ratio tests completed at 5No exploratory hole locations;
 - 4No return visits to monitor ground gas concentrations and groundwater levels;
 - Laboratory analysis for chemical and geotechnical purposes.
- 2.3.3 The results of the ground investigation revealed a ground profile comprising Topsoil and Made Ground over sand deposits considered to represent the Bagshot Formation.
- 2.3.4 During the intrusive works groundwater was reported in a singular exploratory hole WS9 as seepage at 0.40m bgl. Groundwater was not reported in any of the other exploratory holes during the intrusive investigation. 4No groundwater monitoring visits were undertaken between 14th March 2019 and 2nd April 2019. Groundwater levels were reported between 1.78m and 3.94m bgl.
- 2.3.5 Following generic risk assessments, no elevated concentrations were detected in soils in excess of generic assessment criteria for the protection of human health within a residential with plant uptake end-use scenario. No asbestos fibres were detected in the samples analysed in the laboratory.
- 2.3.6 Risks to controlled waters were not considered to be significant. It was recommended that the water supply pipe requirements should be confirmed with the relevant utility provider.
- 2.3.7 It was considered that following gas monitoring, the wider site can be characterised as Characteristic Situation 1, where gas protection measures are not required. However, it was recommended that additional monitoring well installations be installed and subsequent return gas monitoring are recommended within the area of the former contractor's compound. The objective would to determine whether the

concentrations of methane and carbon dioxide detected in WS2 are representative of this area, which would likely necessitate gas protection measures complying with a CS2 classification, or whether they are localised to the vicinity of WS2, in which case a CS1 classification would be considered appropriate.

2.3.8 The updated conceptual site model as a result of the ground investigation is reproduced in Table 2.2 overleaf.

Potential Source (from desk study)	Pathway	Receptor	Relevant Pollutant Linkage?	Comment
 Potential for Made Ground associated with previous development operations – on site (S1) Barn development, contractors compound and track (north east) Potential for contamination associated with previous development operations – off 	 Ingestion and dermal contact with contaminated soil (P1) Inhalation or contact with potentially contaminated dust and vapours (P2) Permeation of water pipes and attack on concrete foundations by aggressive soil conditions (P6) 	 Construction workers (R1) Maintenance workers (R2) Neighbouring site users (R3) Future site users (R4) Building foundations and on site buried services (water mains, electricity and sewer) (R5) 	Ν	Refer to Section 9.1 for remedial measures. The findings of this report should be included in the construction health and safety file, with adequate measures put in place for the protection of construction and maintenance workers.
site (S2) - Rail track (west)	 Accumulation and migration of soil gases (P5) 		?	Further gas monitoring recommended.
 Potential for contaminated ground from historic use as a nursery – southern half of site (S3) 	 Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. (P3) Horizontal and vertical migration of contaminants within groundwater (P4) 	 Neighbouring site users (R3) Controlled Waters – secondary (A) aquifer, Hoe Stream (R6) Building foundations and on site buried services (water mains, electricity and sewer) (R5) 	Y	Remedial measures required and set out in Section 9.1. Contact should be made with relevant utility providers to confirm if upgraded materials are required.

3 GROUND INVESTIGATION

3.1 Rationale for Ground Investigation

- 3.1.1 The site investigation has been undertaken generally in accordance with Contaminated Land Report 11, BS10175, NHBC Standards Chapter 4.1, and other associated Statutory Guidance. If required, further targeted investigations and remedial option appraisal would be dependent on the findings of this site investigation.
- 3.1.2 The soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR).
- 3.1.3 The sampling proposal was designed in order to gather data representative of the site conditions.

3.2 Scope of Ground Investigation

- 3.2.1 The ground investigation was undertaken on 17th May 2019.
- 3.2.2 The work was undertaken in accordance with BS5930 'Code of Practice for Site Investigation' and BS10175 'Investigation of Potentially Contaminated Sites'. All works were completed without incident.
- 3.2.3 The investigation focused on collecting data on the following:
 - Quality of Made Ground/ natural ground within the area identified as the former contractors compound;
 - Presence of groundwater beneath the site (if any), perched or otherwise;
 - Determination of the presence or absence of hazardous ground gases;
- 3.2.4 A summary of the fieldwork carried out at the site, with justifications for exploratory hole positions, are offered in Table 3.1 below.

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved (m BGL)	Justification
Window Sample Boreholes	4	WSA - WSD	Up to 3.0mbgl	Obtain shallow samples for contamination testing. All exploratory holes positioned with area identified as former contractors compound.

Table 3.1: Scope of Intrusive Investigation

SECTION 3 GROUND INVESTIGATION

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved (m BGL)	Justification
Monitoring Wells	4	WSA - WSD	Up to 3.0mbgl	Combined soil gas and groundwater monitoring wells. All monitoring wells targeting response zone within Bagshot Formation in area identified as former contractors compound.

- 3.2.5 The exploratory holes were completed to allow soil samples to be taken in the areas of interest identified in Table 3.1 above. In all cases, all holes were logged in accordance with BS5930:2015.
- 3.2.6 Exploratory hole positions were located approximately with reference to known features on as shown in the exploratory hole location plan presented in Appendix 1. The exploratory hole records are included in Appendix 2.

3.3 Sampling Rationale

- 3.3.1 Our soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR).
- 3.3.2 The exploratory holes were positioned by applying a combined non-targeted sampling strategy, as well as sample locations positioned with reference to sources identified from the desk study.
- 3.3.3 Soil samples were taken from across the site at various depths as shown in the exploratory hole logs.
- 3.3.4 Jomas Associates Limited's engineers normally collect samples at appropriate depths based on field observations such as:
 - appearance, colour and odour of the strata and other materials, and changes in these;
 - the presence or otherwise of sub-surface features such as pipework, tanks, foundations and walls; and,
 - areas of obvious damage, e.g. to the building fabric.
- 3.3.5 A number of the samples were taken from the top 0-1m to aid in the assessment of the pollutant linkages identified at the site. In addition, some deeper samples were taken to aid in the interpretation of fate and transport of any contamination identified.

- 3.3.6 Samples were stored in cool boxes (<4°C) and preserved in accordance with laboratory guidance.
- 3.3.7 Groundwater strikes noted during drilling, are recorded within the exploratory hole records in Appendix 2.

3.4 Sampling Limitations

3.4.1 All of the exploratory holes were drilled in the original proposed locations to their proposed depths.

3.5 Laboratory Analysis

3.5.1 A programme of chemical laboratory testing, scheduled by Jomas Associates Limited, was carried out on selected samples of Made Ground and natural strata.

Chemical Testing

- 3.5.2 Soil samples were submitted to i2 Analytical (a UKAS and MCerts accredited laboratory), for analysis.
- 3.5.3 The samples were analysed for a wide range of contaminants as shown in Table 3.2 below:

	No. of tests					
	Jomas – Ap	Jomas – June 2019				
Test Suite	Topsoil	Made Ground				
Basic Suite S3	5	3	2			
Basic Suite S5	1	1	1			
TPHCWG (inc BTEX)	1	1	2			
VOC/SVOC	1	1	2			
Total Organic Content	2	2	2			
Pesticides	2	0	0			
Asbestos Screen & ID	6	4	3			

Table 3.2: Chemical Tests Scheduled

3.5.4

The determinands contained in the basic suite are as detailed in Table 3.3 below:

DETERMINAND	LIMIT OF DETECTION (mg/kg)	UKAS ACCREDITATION	TECHNIQUE
Arsenic	1	Y (MCERTS)	ICPMS
Cadmium	0.2	Y (MCERTS)	ICPMS
Chromium	1	Y (MCERTS)	ICPMS
Chromium (Hexavalent)	4	Y (MCERTS)	Colorimetry
Lead	1	Y (MCERTS)	ICPMS
Mercury	0.3	Y (MCERTS)	ICPMS
Nickel	1	Y (MCERTS)	ICPMS
Selenium	1	Y (MCERTS)	ICPMS
Copper	1	Y (MCERTS)	ICPMS
Zinc	1	Y (MCERTS)	ICPMS
Boron (Water Soluble)	0.2	Y (MCERTS)	ICPMS
pH Value	0.1 units	Y (MCERTS)	Electrometric
Sulphate (Water Soluble)	0.0125g/l	Y (MCERTS)	Ion Chromatography
Total Cyanide	1	Y (MCERTS)	Colorimetry
Speciated/Total PAH	0.05/0.80	Y (MCERTS)	GCFID
Phenols	1	Y (MCERTS)	HPLC
Total Petroleum Hydrocarbons (banded)	-	N Y (MCERTS)	Gas Chromatography

Table 3.3: Basic Suite of Determinands

- 3.5.5 To support the selection of appropriate tier 1 screening values, 7No samples were also analysed for total organic carbon.
- 3.5.6 Laboratory test results are summarised in Section 6, with raw laboratory data included in Appendix 3.

4 GROUND CONDITIONS

4.1 Soil

- 4.1.1 Ground conditions were logged in accordance with the requirements of BS5930:2015. Detailed exploratory hole logs are provided in Appendix 2.
- 4.1.2 The ground investigations have identified two distinct zones of superficial soils, both overlying solid sand deposits considered to represent the Bagshot Formation.
- 4.1.3 In Zone 1 (as shown in Figure 4) superficial soils comprise Made Ground that includes a significant quantity of anthropogenic material, including brick and concrete. It is considered that the Made Ground on site is likely associated with the barn development within the north eastern part of site, and the former use as a contractors compound as identified during the previous Desk Study (Jomas – August 2018). In Zone 2, an area of significant historic site developments, superficial soils comprised an organic soils comprising brown clay with roots and rootlets.
- 4.1.4 The ground conditions for each of the zones are detailed in Table 4.1 and Table 4.2 below.

Stratum and Description	Encountered from (m bgl)	Base of strata (m bgl)	Thickness range (m)
Asphalt over loose* light brown to pink sandy gravel. (MADE GROUND) Encountered in WSC only.	GL	0.80	0.80
Soft consistency* brown sandy slightly gravelly clay. Gravel consists of fine to medium angular to sub-angular flint and brick and concrete fragments. (MADE GROUND)	GL – 0.80	0.40 - 1.00	0.20 - 0.70
Medium becoming very dense brown to orange silty slightly clayey SAND. Sand is fine to medium. (BAGSHOT FORMATION)	0.50 – 1.00	3.00 - 15.00	2.00 – 14.60

Table 4.1: Ground Conditions Encountered (Zone 1)

*Field description

- 4.1.5 The pink sandy gravels encountered at WSC are considered to be as a result of the access track located within the north eastern part of the site. WSC was also the only exploratory hole to be completed within existing hardstanding present in Zone 1.
- 4.1.6 The Made Ground encountered in Zone 1 generally comprises sandy slightly gravelly clays with brick an concrete fragments, underlain by sand deposits considered to represent the Bagshot Formation.

Stratum and Description	Encountered from (m bgl)	Base of strata (m bgl)	Thickness range (m)
Soft consistency* brown sandy CLAY with roots and rootlets. Sand is fine. (ORGANIC SOIL)	GL – 0.60	0.30 – 0.60	0.30 - 0.60
Brown to orange silty clayey slightly gravelly SAND. Sand is fine to medium. Gravel consists of fine to coarse, sub- rounded flint. (BAGSHOT FORMATION - Residual)	0.30 - 0.60	0.60 - 1.00	0.30 – 0.60
Medium becoming very dense brown to orange silty slightly clayey SAND. Sand is fine to medium. (BAGSHOT FORMATION)	0.40 - 1.00	3.00 - 15.00	2.00 - 14.60

Table 4.2: Ground Conditions Encountered (Zone 2)

*Field description

- 4.1.7 The organic soil encountered within Zone 2 generally comprise sandy clay, underlain by slightly gravelly sand deposits and sand deposits, considered to represent residual and solid deposits of the Bagshot Formation respectively.
- 4.1.8 The residual Bagshot Formation deposits represent the slightly gravelly sand deposits. This was not encountered in Zone 1, this is likely due to the strata being removed and replaced by Made Ground during the historic use as a contractors compound.

4.2 Hydrogeology

- 4.2.1 Groundwater was not reported in any of the exploratory holes during the intrusive investigation.
- 4.2.2 As part of the previous ground investigation, 4No return groundwater monitoring visits were undertaken between 14th March 2019 and 2nd April 2019.
- 4.2.3 An additional 4No visits were undertaken from 24 May 2019 to 10 June 2019 to measure the levels within the previous monitoring wells, and the supplementary monitoring wells installed as part of this investigation. The results are summarised below in Table 4.2.

Table 4.2: Groundwater Monitoring Records

Exploratory Hole ID	Depth Encountered (m bgl)	Depth to Base of Well (m bgl)	Strata targeted by response zone
WS2	1.78 – 2.14	4.04	Sand - Bagshot Formation
WS4	2.90 - 3.12	3.90	Sand - Bagshot Formation
WS5	3.18 - 3.54	4.84	Sand - Bagshot Formation
WS7	3.87 – 3.94	4.96	Sand - Bagshot Formation
WS10	3.71 – 3.77	4.88	Sand - Bagshot Formation
WSA	1.97 – 2.10	2.79	Sand - Bagshot Formation
WSB	2.10 - 2.17	2.84	Sand - Bagshot Formation
WSC	2.07 – 2.20	2.90	Sand - Bagshot Formation
WSD	Dry	2.95	Sand - Bagshot Formation

4.3 Physical and Olfactory Evidence of Contamination

4.3.1 A hydrocarbon/organic odour was note within exploratory hole WSC between 0.80m and 1.00m bgl. No other visual or olfactory evidence of contamination was observed within the other exploratory holes.

5 RISK ASSESSMENT – ANALYTICAL FRAMEWORK

5.1 Context and Objectives

- 5.1.1 This section seeks to evaluate the level of risk pertaining to human health and the environment which may result from both the existing use and proposed future use of the site. It makes use of the site investigation findings, as described in the previous sections, to evaluate further the potential pollutant linkages identified in the desk study. A combination of qualitative and quantitative techniques is used, as described below.
- 5.1.2 The purpose of generic quantitative risk assessment is to compare concentrations of contaminants found on site against screening level generic assessment criteria (GAC) to establish whether there are actual or potential unacceptable risks. It also determines whether further detailed assessment is required. The approaches detailed all broadly fit within a tiered assessment structure in line with the framework set out in the Department of Environment, Food and Rural Affairs (DEFRA), EA and Institute for Environment and Health Publication, Guidelines for Environmental Risk Assessment and Management.
- 5.1.3 It should be noted that the statistical tests carried out in this report in accordance with CL:AIRE and CIEH (2008) recommendations, are for guidance purposes only and the conclusions of this report should be approved by the local authority prior to any redevelopment works being undertaken.

5.2 Analytical Framework – Soils

- 5.2.1 There is no single methodology that covers all the various aspects of the assessment of potentially contaminated land and groundwater. Therefore, the analytical framework adopted for this investigation is made up of a number of procedures, which are outlined below. All of these are based on a Risk Assessment methodology centred on the identification and analysis of Source – Pathway – Receptor linkages.
- 5.2.2 The CLEA model provides a methodology for quantitative assessment of the long term risks posed to human health by exposure to contaminated soils. Toxicological data have been used to calculate Soil Guideline Values (SGV) for individual contaminants, based on the proposed site use; these represent minimal risk concentrations and may be used as screening values.
- 5.2.3 In the absence of any published SGVs for certain substances, or where the assumptions made in generating the SGVs do not apply to the site, Jomas Associates Limited have obtained Tier 1 screening values for initial assessment of the soil, based on available current UK guidance including the LQM/CIEH S4ULs and DEFRA C4SL. Site-specific assessments are undertaken wherever possible and/or applicable. All assessments are carried out in accordance with the CLEA protocol.

- 5.2.4 CLEA requires a statistical treatment of the test results to take into account the normal variations in concentration of potential contaminants in the soil and allow comparisons to be made with published guidance.
- 5.2.5 The assessment criteria used for the screening of determinands within soils are identified within Table 5.1.

Substance Group	Determinand(s)	Assessment Criteria Selected
Organic Substances		
Non-halogenated Hydrocarbons	Total Petroleum Hydrocarbons (TPHCWG banded)	S4UL
	Total Phenols	S4UL
Polycyclic Aromatic Hydrocarbons (PAH-16)	Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenzo(a,h)anthracene, Benzo(ghi)perylene	S4UL
Volatile Organic Compounds (VOCs/sVOCs).	Toluene, Ethylbenzene, Benzene, Xylenes	S4UL
Inorganic Substances		
Heavy Metals and Metalloids	Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium, Copper, Zinc	S4UL
	Copper, Zinc, Nickel	BS: 3882 (2015).
Cyanides	Free Cyanide	CLEA v1.06
Sulphates	Water Soluble Sulphate	BRE Special Digest 1:2005

Table 5.1: Selected Assessment Criteria – Contaminants in Soils

5.3 BRE

5.3.1 The BRE Special Digest 1:2005, 'Concrete in Aggressive Ground' is used with soluble sulphate and pH results to assess the aggressive chemical environment of future underground concrete structures at the site.

5.4 Site Specific Criteria

5.4.1 The criteria adopted in the selection of correct screening criteria from published reports as previously described, are provided within Table 5.3.

Table	5.3:	Site	Specific	Data
-------	------	------	----------	------

Input Details	Value
Land Use	Residential with plant uptake
Soil Organic Matter	1%

- 5.4.2 As the published reports only offer the option of selecting a SOM value of 1%, 2.5% or 6%, a SOM value of 1% has been used for the generation of generic assessment criteria, as 1.15% was the mean value obtained from laboratory analysis.
- 5.4.3 It is understood that the site is to be converted to provide residential units with associated communal soft landscaping. As a result, the site has been assessed as residential with plant uptake.

6 GENERIC QUANTITATIVE RISK ASSESSMENT

- 6.1 Screening of Soil Chemical Analysis Results Human Health Risk Assessment
- 6.1.1 Laboratory analysis for soils are summarised in Tables 6.1 to 6.3. Raw laboratory data is included in Appendix 3a and 3b, the April and June results respectively.
- 6.1.2 Results from both investigations (April 2019 and June 2019) have been included in the table below.

Determinand	Unit	No. samples tested	Screenin	g Criteria	Min	Max	No. Exceeding
Arsenic	mg/kg	13	S4UL	37	2.2	14	0
Cadmium	mg/kg	13	S4UL	11	0.7	6.1	0
Chromium	mg/kg	13	S4UL	910	24	72	0
Lead	mg/kg	13	C4SL	200	13	110	0
Mercury	mg/kg	13	S4UL	40	<0.3	0.7	0
Nickel	mg/kg	13	S4UL	180	3.5	12	0
Copper	mg/kg	13	S4UL	2400	22	71	0
Zinc	mg/kg	13	S4UL	3700	55	170	0
Total Cyanide ^A	mg/kg	13	CLEA v 1.06	33	<1	4	0
Selenium	mg/kg	13	S4UL	250	<1.0	<1.0	0
Boron Water Soluble	mg/kg	13	S4UL	290	0.3	1.2	0
Phenols	mg/kg	13	S4UL	120	<1.0	<1.0	0

Table 6.1: Soil Laboratory Analysis Results – Metals, Metalloids, Phenol, Cyanide

Notes: ^A Generic assessment criteria derived for free inorganic cyanide.

Table 6.2: Soil Laboratory Analysis Results – Polycyclic Aromatic Hydrocarbons (PAHs)

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
Naphthalene	mg/kg	14	S4UL	2.3	<0.05	<0.05	0
Acenaphthylene	mg/kg	14	S4UL	170	<0.05	<0.05	0
Acenaphthene	mg/kg	14	S4UL	210	<0.05	<0.05	0
Fluorene	mg/kg	14	S4UL	170	<0.05	<0.05	0
Phenanthrene	mg/kg	14	S4UL	95	<0.05	1.7	0
Anthracene	mg/kg	14	S4UL	2400	<0.05	0.54	0
Fluoranthene	mg/kg	14	S4UL	280	<0.05	1.5	0

SECTION 7 SOIL GAS RISK ASSESSMENT

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
Pyrene	mg/kg	14	S4UL	620	<0.05	1.8	0
Benzo(a)anthracene	mg/kg	14	S4UL	7.2	<0.05	1.3	0
Chrysene	mg/kg	14	S4UL	15	<0.05	1.0	0
Benzo(b)fluoranthene	mg/kg	14	S4UL	2.6	<0.05	1.4	0
Benzo(k)fluoranthene	mg/kg	14	S4UL	77	<0.05	1.1	0
Benzo(a)pyrene	mg/kg	14	S4UL	2.2	<0.05	1.6	0
Indeno(123-cd)pyrene	mg/kg	14	S4UL	27	<0.05	0.90	0
Dibenzo(ah)anthracene	mg/kg	14	S4UL	0.24	<0.05	<0.05	0
Benzo(ghi)perylene	mg/kg	14	S4UL	320	<0.05	1.2	0
Total PAH	mg/kg	14	-		<0.80	13.3	-

Table 6.3: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPH)

TPH Band	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
C8-C10	mg/kg	10	S4UL	27	<0.1	<0.1	0
>C ₁₀ -C ₁₂	mg/kg	10	S4UL	74	<2.0	9.0	0
>C ₁₂ -C ₁₆	mg/kg	10	S4UL	140	<4.0	12	0
>C ₁₆ -C ₂₁	mg/kg	10	S4UL	260	<1.0	20	0
>C ₂₁ -C ₃₅	mg/kg	10	S4UL	1100	60	370	0
Total TPH	mg/kg	10	-	-	67.1	396.1	-

Note: *The lower value of guidelines for Aromatic/Aliphatics has been selected

Table 6.4: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPHCWG)

TPH Band	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
>C5-C6 Aliphatic	mg/kg	4	S4UL	42	<0.001	<0.001	0
>C ₆ -C ₈ Aliphatic	mg/kg	4	S4UL	100	<0.001	<0.001	0
>C ₈ -C ₁₀ Aliphatic	mg/kg	4	S4UL	27	<0.001	<0.001	0
>C ₁₀ -C ₁₂ Aliphatic	mg/kg	4	S4UL	130	<1.0	<1.0	0
>C12-C16 Aliphatic	mg/kg	4	S4UL	1100	<2.0	<2.0	0
>C ₁₆ -C ₃₅ Aliphatic	mg/kg	4	S4UL	65000	57	90	0
>C5-C7 Aromatic	mg/kg	4	S4UL	70	<0.001	<0.001	0
>C7-C8 Aromatic	mg/kg	4	S4UL	130	<0.001	<0.001	0
>C ₈ -C ₁₀ Aromatic	mg/kg	4	S4UL	34	<0.001	<0.001	0

SECTION 7 SOIL GAS RISK ASSESSMENT

TPH Band	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
>C ₁₀ -C ₁₂ Aromatic	mg/kg	4	S4UL	74	4.0	4.3	0
>C ₁₂ -C ₁₆ Aromatic	mg/kg	4	S4UL	140	2.3	12	0
>C ₁₆ -C ₂₁ Aromatic	mg/kg	4	S4UL	260	<10	31	0
>C ₂₁ -C ₃₅ Aromatic	mg/kg	4	S4UL	1100	150	170	0
Total TPH (Ali/Aro)	mg/kg	4	S4UL	42	251	279.6	0

6.2 Volatile Organic Compounds

6.2.1 In addition to the suites outlined previously, 4No samples were tested for the presence of volatile organic compounds including BTEX compounds (benzene, toluene, ethylbenzene, xylene). No VOCs were reported above the laboratory detection limit within any tested sample.

6.3 Pesticides

- 6.3.1 In addition to the suites outlined previously, 2No samples were tested for the presence of pesticides within the southern half of site due to its historic use as a nursery.
- 6.3.2 A single sample from WS9 (0.25m) reported organochlorine pesticides, no organonitrogen or organophosphorus pesticides were detected. The results are summarised in Table 6.5 below; only compounds reported above detection limit have been included.

TPH Band	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
DDD-o,p'	μg/kg	1	EPA RSL*	1900+	7.9	7.9	0
DDD-p,p'	μg/kg	1	EPA RSL*	1900	74	74	0
DDE-p,p'	µg/kg	1	EPA RSL*	2000	130	130	0
DDT-o,p'	μg/kg	1	EPA RSL*	1900+	5.3	5.3	0
DDT-p,p'	μg/kg	1	EPA RSL*	1900+	30	30	0

Table 6.5: Soil Laboratory Analysis Results – Organochlorine Pesticides

*In the absence of British Standard screening criteria, values have been obtained from the US Environmental Protection Agency Regional Screening Levels documentation

*In the absence of isomer-specific screening values, the most conservative criteria for another isomer of the same compound has been used.

6.3.3

As summarised in the table above, none of the organochlorine pesticides reported above laboratory detection limit exceeded their respective screening criteria.

6.4 Asbestos in Soil

- 6.4.1 13No samples were screened in the laboratory for the presence of asbestos. Asbestos was reported positive for a single sample (WSA at 0.25m) as chrysolite loose fibres.
- 6.4.2 The results reported an asbestos content of below 0.1%, the fibre content at which arisings are considered hazardous for the purpose of disposal.
- 6.4.3 It should be noted that for the purposes of human health assessment there is no level of asbestos below which it is deemed the materials are "safe".

6.5 Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth

- 6.5.1 Zinc, copper and nickel are phytotoxins and could therefore inhibit plant growth in soft landscaped areas. Concentrations measured in soil for these determinands have been compared with the pH dependent values given in BS: 3882 (2015).
- 6.5.2 Adopting a pH value of greater than 7, as indicated by the results of the laboratory analysis, the following is noted;

Determinand	Threshold level (mg/kg)	Min (mgkg)	Max (mg/kg)	No. Exceeding
Zinc	300	55	170	0
Copper	200	22	71	0
Nickel	110	3.5	12	0

Table 6.6: Soil Laboratory Analysis Results – Phytotoxic Determinands

6.6 Screening for Water Pipes

6.6.1 The results of the analysis have been assessed for potential impact upon water supply pipes. Table 6.7 below summarises the findings of the assessment:

	No. of	Threshold	Value for sit	e data (mg/kg)	_
Determinand	tests	adopted for PE (mg/kg)	Min	Max	No of Exceedances
Total VOCs	4	0.5	<0.0056	<0.0056	-
BTEX	4	0.1	<0.001	<0.001	-
MTBE	4	0.1	<0.001	<0.001	-
EC5-EC10	10	1	<0.1	<0.1	-
EC10-EC16	10	10	<6.0	21	2No exceedances WS4 (0.25m) WS6 (0.25m)
EC16-EC40	10	500	61	390	-
Naphthalene	14	5	<0.05	0.28	-
Phenols	14	2	<1	<1	-

Table 6.7: Screening Guide for Water Pipes

- 6.6.3 The above suggests that upgraded pipe work may be required.
- 6.6.4 It may be possible to utilise other protection methods including (but not limited to):
 - diversion of the pipe,
 - localised remediation
 - embedding the pipe in a sufficient thickness of clean granular material
- 6.6.5 The water supply pipe requirements for this site should be discussed at an early stage with the relevant Utility provider.

6.7 Concrete in the Ground

- 6.7.1 Sulphate attack on building foundations occurs where sulphate solutions react with the various products of hydration in Ordinary Portland Cement (OPC) or converted High-Alumina Cement (HAC). The reaction is expansive, and therefore disruptive, not only due to the formation of minute cracks, but also due to loss of cohesion in the matrix.
- 6.7.2 In accordance with BRE Special Digest 1, as there are less than 10 results in the data set the highest value has been taken.
- 6.7.3 Table 6.8 summarises the analysis of the aggressive nature of the ground for each of the strata encountered within the previous and supplementary ground investigation.

Stratum	No. Samples	pH range	Highest WS Sulphate (mg/l)	Design Sulphate Class	ACEC Class
Made Ground	7	7.4 – 9.2	422	DS-2	AC-2
Topsoil	7	5.8 – 6.9	16	DS-1	AC-1
Bagshot Formation	4	7.6 - 8.4	220	DS-1	AC-1

Table 6.8: Concrete in the Ground Classes

6.8 Waste Disposal

6.8.1 The classification of materials for waste disposal purposes was outside the scope of this report. Should quantities of material require off-site disposal, Waste Acceptance Criteria testing will be required.

7 SOIL GAS RISK ASSESSMENT

7.1 Soil Gas Results

- 7.1.1 Four return monitoring visits have been undertaken to monitor wells installed within boreholes at the site for soil gas concentrations and groundwater levels.
- 7.1.2 In addition to the supplementary well installations, the monitoring wells from the previous ground investigation were also included in the return monitoring.
- 7.1.3 Four additional return monitoring visits have been undertaken from 24 May 2019 to 10 June 2019, to monitor wells installed within all boreholes at the site for soil gas concentrations and groundwater levels.
- 7.1.4 During these visits atmospheric pressure ranged between 1009mb and 1019mb. During these visits pressure trends observed were as rising and steady.
- 7.1.5 The results of the monitoring undertaken are summarised in Table 7.1 below, with the monitoring records presented in Appendix 4.
- 7.1.6 The data presented below has been combined with the 4No monitoring visits undertaken as part of the previous investigation from 14 March 2019 to 02 April 2019.

Hole No.	CH₄ (%)	CO₂ (%)	O2 (%)	H₂S (ppm)	VOCs (ppm)	Steady Flow Rate (I/hr)	Peak Flow Rate (l/hr)	Depth to water (mbgl)	Depth of installation (mbgl)
WS2	< 0.1 - 0.5	1.4 - 28.6	1.1 - 20.0	0	<1.0-5	0.0-0.3	0.0-0.3	1.78 – 2.79	4.04
WS4	<0.1	0.4 - 2.0	18.9 – 20.6	0	<1.0-5	0.0-0.2	0.0-0.2	2.90 - 3.66	3.90
WS5	<0.1	0.4 - 0.9	19.9 – 20.8	0	<1.0-5	0.0-0.1	0.0-0.1	3.18 - 4.19	4.84
WS7	<0.1	3.4 - 5.0	15.6 – 17.6	0	<1.0-4	0.0-0.1	0.0-0.1	3.91 - 4.06	4.96
WS10	<0.1	2.5 – 3.0	17.9 – 18.9	0	<1.0	0.0 - 0.2	0.0-0.2	3.71 – 3.78	4.88
WSA	<0.1	5.0 – 5.7	16.0 - 17.1	0	2 – 8	0-0.3	0-0.3	1.97 – 2.10	2.79
WSB	<0.1	0.7 - 1.4	20.6 - 20.7	0	1-9	0-0.3	0-0.3	2.10 - 2.17	2.84
WSC	<0.1	0.4 - 0.9	14.4 - 18.7	0	4-6	0-0.4	0-0.4	2.07 – 2.20	2.90
WSD	2.6-8.1	6.4 - 10.8	12.3 – 17.2	0	<0.1-4	0-0.2	0-0.2	Dry	2.95

Table 7.1: Summary of Gas Monitoring Data

7.2 Screening of Results

7.2.1 As shown in Table 7.1, methane has been reported at a maximum concentration of 8.1% v/v at a single borehole location (WSD), elevated levels of methane were also reported as 0.5% v/v at WS2. Carbon dioxide has been reported to a maximum concentration of 28.6% v/v at WS2, elevated levels of carbon dioxide were also reported as 10.8% v/v in WS2.

- 7.2.2 Screening of the monitoring well headspaces with a photo-ionisation detector (PID) has detected maximum Volatile Organic Compound (VOC) concentration to maximum levels of 9ppm. A maximum flow rate of 0.4I/hr has been reported.
- 7.2.3 In the assessment of risks posed by hazardous ground gases and selection of appropriate mitigation measures, BS8485 (2015) identifies four types of development, termed Type A to Type D.
- 7.2.4 The majority of the site (consisting of the residential housing) is considered as to be a Type A structure which is defined as:

"private ownership with no building management controls on alterations to the internal structure, the use of rooms, the ventilation of rooms or the structural fabric of the building. Some small rooms present. Probably conventional building construction (rather than civil engineering). Examples include private housing and some retail premises."

7.2.5 In addition, there is a commercial gym / sports centre proposed on the site. This potentially may be considered as a Type B building. These are defined as:

"private or commercial property with central building management control of any alterations to the building or its uses but limited or no central building management control of the maintenance of the building, including the gas protection measures. Multiple occupancy. Small to medium size rooms with passive ventilation of rooms and other internal spaces throughout ground floor and basement areas. May be conventional building or civil engineering construction. Examples include managed apartments, multiple occupancy offices, some retail premises and parts of some public buildings (such as schools, hospitals, leisure centres) and parts of hotels."

- 7.2.6 For an initial review Type A has been adopted as the relevant category for the proposed development as this provides the most conservative assessment.
- 7.2.7 The soil gas assessment method is based on that proposed by Wilson & Card (1999), which was a development of a method proposed in CIRIA publication R149 (CIRIA, 1995). The method uses both gas concentrations and borehole flow rates to define a characteristic situation based on the limiting borehole gas volume flow for methane and carbon dioxide. In both these methods, the limiting borehole gas volume flow is renamed as the Gas Screening Value (GSV).
- 7.2.8 The Gas Screening Value (litres of gas per hour) is calculated by using the following equation:

GSV = (Concentration/100) X Flow rate

Where concentration is measured in percent (%) and flow rate is measured in litres per hour (I/hr)

- 7.2.9 The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.
- 7.2.10 To accord with C665, worst case conditions are used in the calculation of GSVs for the site. As detailed in Section 4, the site has been split into two separate zones distinguishing between the Made Ground and organic soil cover on site. The following GSV's have been calculated for each respective zone below, the different zones highlighting the suspected ground cover is detailed in Figure 4.
- 7.2.11 A worst-case flow rate of 0.4l/hr (maximum reported) will be used in the calculation of GSVs for both zones to provide the most conservative assessment. The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.

7.3 GSV Calculation (Zone 1)

7.3.1 To accord with C665, worst case conditions are used in the calculation of GSVs for Zone 1 (Made Ground). The worst case conditions for boreholes WS2 and WSA – WSD are summarised below in Table 7.2.

Gas	Concentration (v/v %)	Peak Flow Rate (I/hr)	GSV (l/hr)	Characteristic Situation (after CIRIA C665)
CO2	28.6	0.4	0.1144	2
CH ₄	8.1	0.4	0.0324	2

Table 7.2: Summary of Gas Monitoring Data (Zone 1)

- 7.3.2 The methodology set out in BS 8485 (2015) has been used for determining the required gas protection measures. For a Type A development on a CS2 sites the gas protection measures must provide a minimum of 3.5points.
- 7.3.3 This can be achieved in a number of ways, within BS8485 it is recommended that a range of protection measures are utilised with a minimum of two separate methods chosen from the three groupings (Structural, Ventilation and Barrier).
- 7.3.4 However, it is felt the following provides options for the most suitable solution for the proposed development:

Protection Measures	BS 8485 Score	
<u>Structural</u> Cast in situ monolithic reinforced ground bearing raft or reinforced cast in situ suspended floor slab with minimal penetrations	1.5	
Ventilation Pressure relief pathway Or	0.5	
Passive sub floor dispersal layer of:Very good performance:	2.5	

Protection Measures	BS 8485 Score
Good performance:	1.5
<u>Barrier</u>	
Gas resistant membrane meeting all of the following criteria:	2
 sufficiently impervious to the gases with a methane gas transmission rate <40.0 ml/day/m2/atm (average) for sheet and joints (tested in accordance with BS ISO 15105-1 manometric method); sufficiently durable to remain serviceable for the anticipated life of the building and duration of gas emissions; sufficiently strong to withstand in-service stresses (e.g. settlement if placed below a floor slab); sufficiently strong to withstand the installation process and following trades until covered (e.g. penetration from steel fibres in fibre reinforced concrete, penetration of reinforcement ties, tearing due to working above it, dropping tools, etc); capable, after installation, of providing a complete barrier to the entry of the relevant gas; and verified in accordance with CIRIA C735 	
MINIMUM REQUIRED TOTAL	3.5

- 7.3.5 To achieve a score of 1.5 the suspended slab should be well reinforced to control cracking and have minimal penetrations of the slab. Any necessary penetrations should be cast in.
- 7.4 The media used to provide the dispersal layer can vary, but commonly are formed using either clear void; a polystyrene void former blanket; a geocomposite void former blanket; a no-fines gravel layer with gas drains or a no-fines gravel layer. In designing the ventilation layer, the ventilation effectiveness of different media needs to be taken into consideration. The effectiveness of the ventilation layer depends on a number of different factors including the transmissivity of the medium, the width of the building, the side ventilation spacing and type and the thickness of the layer.
- 7.4.1 During construction where personnel are required to enter excavations of greater than 1.2m the air quality (Carbon Dioxide, Methane and Oxygen as a minimum) should be regularly checked prior and during person entry. Appropriate precautions, including but not limited to, venting, PPE and gas alarms should be undertaken
- 7.4.2 Any permanent excavations such as manholes, inspection chambers or other void spaces formed beneath the sites ground surface are potential ground gas traps and precautions, as per above, are considered the minimum necessary prior to person entry.

7.5 GSV Calculation (Zone 2)

7.5.1 To accord with C665, worst case conditions are used in the calculation of GSVs for Zone 2 (Made Ground). The worst-case conditions for boreholes WS4, WS5, WS7 and WS10 are summarised below in Table 7.4.

Gas	Concentration (v/v %)	Peak Flow Rate (I/hr)	GSV (l/hr)	Characteristic Situation (after CIRIA C665)
CO2	5.0	0.4	0.02	1
CH ₄	0.1	0.4	0.0004	1

Table 7.4: Summary of Gas Monitoring Data (Zone 2)

7.5.2 The methodology set out in BS 8485 (2015) has been used for determining the required gas protection measures. For a Type A development on a CS1 site no gas protection measures are required.

7.6 Gas Risk Assessment Summary

- 7.6.1 GSV calculations for both zones using worst case conditions, as detailed in Table 7.2 and Table 7.4 respectively, have determined the two separate zones to be classified as CS2 (Zone 1) and CS1 (Zone 2).
- 7.6.2 As a result of the GSV calculations, Zone 1 (Made Ground) will require gas protection measures providing a minimum of 3.5 protection points. From the proposed development plans provided the entire the residential development will require gas protection measures. This is supported by the CO2 concentrations detected in WS7, which lies within Zone 1 but close to the boundary with Zone 2.
- 7.6.3The proposed development plans indicate that the proposal within Zone 2 comprises
car parking areas and the leisure centre facility. As this area has been classified as CS1,
no gas protection measures are considered necessary in this area of site.
- 7.6.1BS 8576:2013 has been used to derived threshold levels for Carbon Monoxide and
Volatile Organic Compounds.
- 7.6.2 Given the recorded levels across the entire site it is not considered that additional protection measures need to be incorporated to protect end users from the recorded Carbon Monoxide concentrations.
- 7.6.3 VOC levels of up to 9ppm were detected by means of screening the ground gas monitoring wells with a photo-ionisation detector. Given the low reading detected, and that the analytical soil data has not not shown any evidence of a source of VOCs underlying the site and therefore risks associated with inhalation of VOCs are considered to be negligible.

8 SUMMARY OF RESULTS

8.1 Land Quality Impact Summary

- 8.1.1 Following the ground investigation, the following is noted:
 - The proposed development comprises the following:
 - 'Redevelopment of the site, following the demolition of the existing building, to provide a health club building (Class D2) incorporating an external swimming pool and tennis/sports courts, the provision of 36 dwelling houses (Class C3) up to a maximum of 3 storeys in height, associated landscaping and car parking and new vehicular access from an existing road servicing Hoe Valley School.'
 - As detailed in Section 4, the ground investigations have identified two distinct zones of superficial soils, both overlying solid sand deposits considered to represent the Bagshot Formation.
 - In Zone 1 (as shown in Figure 4) superficial soils comprise Made Ground that includes a significant quantity of anthropogenic material, including brick and concrete. It is considered that the Made Ground on site is likely associated with the barn development within the north eastern part of site, and the former use as a contractor's compound as identified during the previous Desk Study (Jomas – August 2018). In Zone 2, an area of significant historic site developments, superficial soils comprised an organic soil comprising brown clay with roots and rootlets.
 - No concentrations were detected in soils in excess of generic assessment criteria for the protection of human health within a residential with plant uptake end-use scenario.
 - Asbestos fibres were reported in the form of chrysotile within a single sample of made ground from WSA, located in Zone 1 (as detailed in Section 4). The asbestos quantification results reported an asbestos content of below 0.1%, the fibre content at which arisings are considered hazardous for the purpose of disposal.
 - Soft landscaping formed within areas of Made Ground located in Zone 1 should comprise a clean cover layer comprising 600mm imported clean topsoil /subsoil over a geotextile membrane. In areas where Made Ground does not exceed 600mm depth, the depth of ground removal can be limited

at this depth, without the need for a geotextile membrane it can be uplifted and replaced with imported topsoil.

- Provision of a clean cover layer will not be required in Zone 2, from the proposed development plans provided this zone comprises the commercial leisure centre with associated car parking.
- Risks to controlled waters are not considered to be significant.
- Zone 1 will require gas protection measures providing a minimum of 3.5 protection points. From the proposed development plans provided the entire the residential development will require gas protection measures. This is supported by the CO2 concentrations detected in WS7, which lies within Zone 1 but close to the boundary with Zone 2.
- The proposed development plans indicate that the proposal within Zone 2 comprises car parking areas and the leisure centre facility. As this area has been classified as CS1, no gas protection measures are considered necessary in this area of site.
- A remedial strategy will be required for the proposed development.
- As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out. Should any contamination be encountered, a suitably qualified environmental consultant should be informed immediately, so that adequate measures may be recommended.
- 8.1.2 The above conclusions are made subject to approval by the statutory regulatory bodies.

8.2 Review of Pollutant Linkages Following Site Investigation

8.2.1 The site CSM has been revised and updated from that suggested in the desk study in view of the ground investigation data, including soil laboratory analysis results. Table 8.1 highlights whether pollutant linkages identified in the original CSM are still relevant following the risk assessment, or whether pollutant linkages, not previously identified, exist.

	tential Source m desk study)	Pathway	Receptor	Relevant Pollutant Linkage?	Comment
associate developm site (S1) - Barn dev contracto track (nor Potential associate developm	for Made Ground ed with previous ment operations – on velopment, ors compound and rth east) for contamination ed with previous ment operations – off	 Ingestion and dermal contact with contaminated soil (P1) Inhalation or contact with potentially contaminated dust and vapours (P2) Permeation of water pipes and attack on concrete foundations by aggressive soil conditions (P6) 	 Construction workers (R1) Maintenance workers (R2) Neighbouring site users (R3) Future site users (R4) Building foundations and on site buried services (water mains, electricity and sewer) (R5) 	Y	see 9.1 above for remedial measures. The findings of this report should be included in the construction health and safety file, with adequate measures put in place for the protection of construction and maintenance workers.
site (S2) - Rail trac	()	 Accumulation and migration of soil gases (P5) 		Y	Gas protection measures required in residential areas, refer to Section 9.1.
ground fr	for contaminated rom historic use as a - southern half of site	 Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. (P3) Horizontal and vertical migration of contaminants within groundwater (P4) 	 Neighbouring site users (R3) Controlled Waters – secondary (A) aquifer, Hoe Stream (R6) Building foundations and on site buried services (water mains, electricity and sewer) (R5) 	Y	Remedial measures required and set out in Section 9.1. Contact should be made with relevant utility providers to confirm if upgraded materials are required.

Table 8.1: Plausible Pollutants Linkages Summary (Pre Remediation)

9 **REFERENCES**

BRE Report BR211: Radon: Protective measures for new dwellings, 2007

BRE Special Digest 1: Concrete in Aggressive Ground, 2005

British Standards Institution (2007) BS 3882:2007 Specification for topsoil and requirements for use. Milton Keynes: BSI

British Standards Institution (2011) BS 10175:2011 Code of practice for the investigation of potentially contaminated sites. Milton Keynes: BSI

British Standards Institution (2015) BS 5930:2015 *Code of practice for site investigations*. Milton Keynes: BSI

CIEH & CL:AIRE (2008) *Guidance on comparing soil contamination data with a critical concentration*. London: Chartered Institute of Environmental Health (CIEH) and CL:AIRE

Environment Agency (2004) *Model procedures for the management of land contamination*. CLR11. Bristol: Environment Agency

Environment Agency, NHBC & CIEH (2008) *Guidance for the safe development of housing on land affected by contamination*. R & D Publication 66. London: Environment Agency

Environment Agency (2006) *Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination* Environment Agency

LQM/CIEH S4ULs. LQM, 2014

National Planning Policy Framework. Department for Communities and Local Government, March 2012

APPENDICES

APPENDIX 1 – FIGURES

JOMAS ASSOCIATES LTD T: 0843 289 2187

Project Name	Egley Road, Woking	Client	Woking Football Club
Project No.	P1381J1459	Date	15/08/2018
Title	Site Location Plan	Figure No	1

JOMAS ASSOCIATES LTD T: 0843 289 2187

Project Name	Egley Road, Woking	Client	Woking Football Club
Project No.	P1381J1459	Date	14/05/2019
Title	Supplementary Exploratory H	Hole Plan Figure No	
N T	BH2 WS5 WS5 WS6 WS8 WS8 WS8 WS8 WS8 WS8 WS8 WS8 WS8 WS8	HDP1 WSA HDP1 WSA TP1 BH1 WSD HDP2	Site Access VSB TP2 VSC VSC VSC VSC VSC VSC VSC VSC

APPENDIX 2 – EXPLORATORY HOLE RECORDS

									-	2			M	/INDOW/WINDOWLESS	SAMPLING BOREHOLE R	ECORD
Genet Converting Units Space (webs) Units						J	•]	¥ F					Explora	tory Hole No:	WSA	
	Site Address:			Egle	ey Road	d, Wok	ing, Gl	J22 0A	۶.				Project	No:	P1381J1459)
	Client:				dev Wo	king L	td						Ground	Level:		
Type of denotes in submit to information in the submit to information i																
		ter of equipr	nent:			s Sam	nler Ri	n								'
						o oum		9					Glioot I		1011	
	Date:			17/	05/201	9										
Work control for 20000 Image		striko:		2.80	<u> </u>											
1 : "Produce reconstruction of 2 2 Construction of 2 Constructin of 2 Construction of 2 Construction of				2.00	5											
2: Concernmentary at 2:000 kg/s 3: 3: Semple or Text V <	Remarks															
$\frac{3}{2}$		-														
41 Series in the interview of th		r encountere	d at 2.8	0m bg	gl.											
Upper Depth (mage) Jirat a Description Tender Depth (mage) Depth (mage) Direction Direction Direction 15 1.25																
Type Order (mig) Status Status Status Status Status Industry Industry Industry Industry Status			Sample	e or Te	ests							Strata				
Upper (mba) Tel bit is the second se		Depth				Resul	t					Depth		Strata D	escription	Installation
25 0.25 0.25 0.00 Image: the same sequence of	Туре		75	75				75		-	Legend					
E5 0.23 Image: State of the state o			/5	/5	/5	/5	/5	/5	IN	0.00 —	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Course on the second states	a de la companya de la Madada de	
15 0.25 0.50 0.70 0.70 Soft to farm consistency "light house multitud" or angle sity diays SMD. (DMSDIOT FORM TION) 10 1.00 1.00 1.00 1.00 1.00 1.00 Soft to farm consistency "light house multitud" or angle sity diays SMD. (DMSDIOT FORM TION) 0 2.00 <td></td> <td>gravelly clay. Gravel cons</td> <td>ists of fine to medium</td> <td>E리트크</td>														gravelly clay. Gravel cons	ists of fine to medium	E리트크
55 0.30 100 100 0.30 Soft to Hm consistency light bown motion orange sity days SAAD. (AddSHOT FLOBALTION) 58.4.0 100 100 100 100 100 100 7 200	ES	0.25								-				angular to sub-angular fli (MADE GROUND)	nt and brick fragments.	
E5 8.0 1.00 1.00 0.0 output stry digy 500. [Mission motiled output stry digy 500. [
E5 & D 1.00 1.00 1.00 1.00 Set 0 from constances light insume method orange stay dispersised. Each instance instance is in the instance inst	ES	0.50								0.50 —						E-23 E-23
E5 & D 1.00 1.00 X X Str to tim consistency "light brown motiod D 2.00 X X X X X D 2.00 X X X X X D 2.00 X X X X X D 2.00 X X X X X X D 2.00 X												0.70				문의문관
ES & D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.										-	××××××××××	0.70		Soft to firm consistency*	light brown mottled	문과문과
D 2.00 D 3.00 D 3.00 Simplify Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced UNamel Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: UWater (U-) Non recovery of Sample Cone: UUndekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: UDistanced UDista										_	· · · × · · ·			orange silty clayey SAND	(BAGSHOT FORMATION)	문의문관
D 2.00 D 3.00 D 3.00 Simplify Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced UNamel Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: U-Undekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: UWater (U-) Non recovery of Sample Cone: UUndekturbed BLarge Distanced USmall Distanced WWater (U-) Non recovery of Sample Cone: UDistanced UDista	FS & D	1.00								1.00 —	××.					
D 2.00 D 3.00 D 3.00	2000									-	···×··					
D 2.00 D 3.00 D 3.00											· · · · · · · · · · · · · · · · · · ·					
D 2.00 D 3.00 D 3.00											· · x · · ·					
D 2.00 D 3.00 D 3.00										1 50	XX. ·X · ·X					
D 3.00 D 3.00										1.50 _	· · · x					
D 3.00 D 3.00										_	X X.					
D 3.00 D 3.00											· · · · · · · · ·					
D 3.00 D 3.00										-	X . ^ X.					
D 3.00 3.00 3.00 3.00 3.00 3.00 4.00 4.00	D	2.00								2.00 —	· · · · · · · · ·					
D 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00 4										_	X X.					
D 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00 4											××.					
D 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00 4											X · . ^X · .X.					
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jonas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										2.50 —	×. ×.					
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jonas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD											X · . · . · . ×. ·					
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jonas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										_	× × .					
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jonas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD											x×	2.00				
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD	D	3.00								3.00 —		3.00				
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										_						
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										_						
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										3.50 —						
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										-						
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										_						
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										4.00 —						
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										_						
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										4.50 —						
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										-						
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										-						
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										5.00 —						
Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																
Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD			S	amplir	ng Cod	e: U- I	Jndistu	rbed	B-la	rge Disturk	ed D - Sm	all Disturbed	W - Water	(U*) Non recovery of Sar	nple	
T: 0843 289 2187 E: info@jomasassociates.com W: www.jomasassociates.com				piii		Jon	nas Ass	sociate	s Ltd -	Lakeside I	House, 1 Furz	eground Way	, Stockley Pa	ark, UB11 1BD	r ·=	
							T: 084	13 289	2187	E: info@jo	masassociate	s.com W: ww	w.jomasasso	ociates.com		
	L															

					J		¥ P	2	5				VINDOW/WINDOWLESS	SAMPLING BOREHOLE F	ECORE)
												-				
Site Address:			-	ey Road dev Wo		ing, Gl td	J22 0A	.F				Project Ground		P1381J145	9	
.ogged By:			SB		King L	lu							ommenced:	17/05/2019	7	
Checked By:			PSw	/								Date Co	ompleted:	17/05/2019		
ype and diame					s Sam	pler Ri	g					Sheet N	lo:	1 Of 1		
Water levels r Date:	ecorded du	ring bo	pring,	m			1									
Hole depth:																
Casing depth:																
evel water on s	strike:															
Vater Level afte	er 20mins:															
Remarks I: *Field descri	intion															
2: No groundwa		ered.														
3:		0.04.														
k:																
		Sample	e or Te	ests					_		Strata		_			
Typo	Depth				Result	t				Logond	Depth	Water Strikes	Strata D	escription	Insta	allatio
Туре	(mbgl)	75	75	75	75	75	75	N	-	Legend	(mbgl)	(mbgl)				
									0.00 —	******			Grass over soft to firm co	nsistency* brown sandy		112-1
													gravelly clay. Gravel cons	ists of fine to coarse	<u> </u>	
ES	0.25								-				angular to subangular brid (MADE GROUND)	ck, concrete and flint.	扫音	:1==
															E	165
ES	0.50								0.50 —						<u> </u>	15-
											0.60		Firm to stiff consistency*	light brown mottled	-333	163
									-	$(\hat{\cdot},\hat{\cdot},\hat{\cdot},\hat{\cdot})$			orange to blue silty claye	y SAND. (BAGSHOT	E	363
									-	X X.			FORMATION)		1333	163
ES + D	1.00								1.00 —	$\hat{\ldots}$						1==
E3 + D	1.00								1.00 -	x · . ^ · . x.						
									_	××.						
									-	x · . × ×.						
									-	××.						
									1.50 —	x · . × ×.						.Ø. : :
										·×.·.×.						
									_	x · · × · · x						
										· x x .						
D	2.00								2.00 —	x · · × · · x						
									-	· x . · . x .						
										, ×						
									_	· x . · . · x .						. Ø · · ·
									2.50 —	, ×						
									-	× · · · × ·						
									-	· · · x						
									-	×						
D	3.00								3.00 —		3.00					
-									-							
									-							
									-							
									-							
									3.50 —							
									_							
									4.00 —							
									-							
									-							
									.							
									4.50 —							
									-							
									-							
									-							
									5.00 —							
							L									
		S	Samplir	ng Cod									(U*) Non recovery of Sar	nple		
					lon	nas Ass	sociate	s Ltd -	Lakeside	House, 1 Furz	earound Wav	Stockley Page 1	ark, UB11 1BD			
										masassociates						

<form><form><form><form></form></form></form></form>								37	34	7			N	/INDOW/WINDOWLESS	SAMPLING BOREHOLE	RECOF	۶D
						J		¥ľ					Explora	tory Hole No:	WSC		
Lingestic Notable Notable Computed Inclusion Inclusion Inclusion Standard Bundles of Support Workshot & Argung H. Notable & Argu	Site Address:			Egle	ey Road	d, Wok	ing, Gl	J22 0A	F				Project	No:	P1381J14	59	
	Client:			-	-		-						-				
Type and consistency of submit for the top																	
	-	ter of equipr	nent:			s Sam	nlor Di	a								19	
						3 Jan		9					Sheet N				
						9											
	· · ·																
Work control date 2010s Image Imag		striko:		2.80	<u> </u>												
1 · · · · · · · · · · · · · · · · · · ·				2.00	5												
2: Concentrent at 2.00m by! Strate Description Installation 4: 5: 5: 5: 5: 5: 5: 5: 1:00 0: 0	Remarks																
5. 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5		-															
1 100 100 100 100 100 100 100 100 100 1		r encountere	d at 2.8	0m bç	gl.												
Type Origin (n Image: model Tot No. No. Tot No. No. Tot No. No. State Beergholds Stat			Sample	e or Te	ests							Strata					
Open Open A N </td <td>-</td> <td>Depth</td> <td></td> <td></td> <td></td> <td>Result</td> <td>t</td> <td></td> <td></td> <td></td> <td></td> <td>Depth</td> <td></td> <td>Strata D</td> <td>escription</td> <td>Ins</td> <td>tallation</td>	-	Depth				Result	t					Depth		Strata D	escription	Ins	tallation
25 0.23 100 <td>Туре</td> <td>(mbgl)</td> <td>75</td> <td>75</td> <td>75</td> <td>75</td> <td>75</td> <td>75</td> <td>N</td> <td>-</td> <td>Legend</td> <td>(mbgl)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Туре	(mbgl)	75	75	75	75	75	75	N	-	Legend	(mbgl)					
100 1			,,,,	/0	75	70	75	73		0.00 —		0.40		Asphalt (MADE GROUND)		-11
100 1												0.10		Loose* light brown to pin		-63	
ES + D 1.00 .00 .00 .00 Set 16 thm consistency due to Lago diffy might be a sub-angle for to Lago diffy might be a sub-angle for to Lago diffy might be a sub-angle for to s	ES	0.25												GROUND)		- F==	리프크
ES + D 1.00 .00 .00 .00 Set 16 thm consistency due to Lago diffy might be a sub-angle for to Lago diffy might be a sub-angle for to Lago diffy might be a sub-angle for to s																E=E	363
ES = D 1.00 Image: start of the constrainty of	ES	0.50								0.50 —						===	
ES = D 1.00 Image: start of the constrainty of										-						E=E	363
ES + D 1.00 Image: Status of the to come of the to com												0.80					
E5 + D 1.00 1.00 incut if is ub-angular brick, concrete and thirty is ub-angular brick. E5 1.50 1.50 1.50 1.50 Site 1 firm consistency is angular brick. D 3.00 2.00 2.00 2.00 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 D 3.00 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50																E-1	3 3 3
ES 1.50 Image: strate form: consistency: light bown motiled orange sity charge sity charg	ES + D	1.00								1.00 —	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			angular to sub-angular bi	ick, concrete and flint.		
ES 1.50 <											$\hat{\ldots}$	1.00		GROUND)			
E5 1.50 <											X · . · . X. · X · · · X			Soft to firm consistency*	light brown mottled		
D 2.00 D 3.00 D 3.00 Sampling Code: U- Undisturbed: 8 - Large Disturbed: D - Small Disturbed: W - Water: (U') Non recovery of Sample Sampling Code: U- Undisturbed: 8 - Large Disturbed: D - Small Disturbed: W - Water: (U') Non recovery of Sample Sampling Code: U- Undisturbed: 8 - Large Disturbed: D - Small Disturbed: W - Water: (U') Non recovery of Sample D Sampling Code: U- Undisturbed: 8 - Large Disturbed: D - Small Disturbed: W - Water: (U') Non recovery of Sample D - D - D - D - D - D - D - D - D - D -											. x			orange sitty clayey SAND		′ ⊞	
D 3.00 3.00 3.00 3.00 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4	ES	1.50								1.50 —	X X.]					
D 3.00 3.00 3.00 3.00 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4											$\hat{\ldots}$	1					
D 3.00 3.00 3.00 3.00 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4										-	X · . · . · . X.	1					
D 3.00 3.00 3.00 3.00 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4											$\hat{\ldots}$						
D 3.00 3.00 3.00 3.00 4.00 4.00 4.00 4.00	D	2.00								2.00 —	X X.]					
D 3.00 3.00 3.00 3.00 3.00 3.00 4.00 4.00											$\hat{\ldots}$	1					
D 3.00 3.00 3.00 3.00 3.00 3.00 4.00 4.00											X.'^`.X.	1					
D 3.00 3.00 3.00 3.00 3.00 3.00 4.00 4.00											. x						
D 3.00 3.00 X · · · X 3.00 X · · · X 3.00 X · · · · · · · · · · · · · · · · · ·										2.50 —	X X.]					
D 3.00 3.00 X · · · X 3.00 X · · · X 3.00 X · · · · · · · · · · · · · · · · · ·										-	$\hat{\ldots}$	1					
D 3.00 3.00 X · · · X 3.00 X · · · X 3.00 X · · · · · · · · · · · · · · · · · ·											XX.	1					
D 3.00 3.00 X · · · X 3.00 X · · · X 3.00 X · · · · · · · · · · · · · · · · · ·																	
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD	D	3.00								3.00 —	XX.	3.00				:::	
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										-							
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																	
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																	
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										3.50 —							
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																	
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										-							
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																	
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										4.00 —							
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																	
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																	
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																	
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										4.50 —							
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																	
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										-	-						
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										-	1						
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										5.00 -							
Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																	
Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD			۔ ہ	ampli		ρ· _	Indictu	irhed	B - Lei	rae Disturk	hed D-Sm	all Disturbed	W - Water	(U*) Non recovery of Sa	mple		
T: 0843 289 2187 E: info@jomasassociates.com W: www.jomasassociates.com			5	anpii	iy cod	Jon	nas Ass	sociate	s Ltd -	Lakeside	House, 1 Furz	eground Way	, Stockley Pa	ark, UB11 1BD	пріє		
							T: 084	13 289	2187	E: info@jo	masassociate	es.com W: ww	w.jomasasso	ociates.com			
	L																

								-	-				V	VI NDOW/WI NI	DOWLESS S	SAMPLING B	OREHOLE RI	ECORE)
					J	0]	S F	7	5				Explora	tory Hole No:			WSD		
Site Address:			-	-		-	J22 0A	F					Project				P1381J1459		
Client: Logged By:			Gold SB	dev Wo	oking L	td							Ground	Level:			17/05/2019		
Checked By:			PSw	/										ompleted:			17/05/2019		
Type and diame	eter of equip	ment:			s Sam	pler Ri	g						Sheet N				1 Of 1		
Water levels r	ecorded du	iring bo	oring,	m			-								1				
Date: Hole depth:																			
Casing depth:																			
Level water on	strike:																		
Water Level after	er 20mins:																		
Remarks 1: *Field descr	intion																		
2: No groundw	-	ered.																	
3:																			
4:																			
		Sampl	e or Te	ests					-			Strata	Mator	-					
Туре	Depth				Result	t				Lege	end	Depth (mbgl)	Water Strikes		Strata De	escription		Insta	allation
	(mbgl)	75	75	75	75	75	75	N	1	9-		(mbgl)	(mbgl)						
									0.00 -	****				Grass over sof	t to firm co	nsistency* bro	wn sandy		1 =====
									-		***			slightly gravel coarse angula					
ES	0.25										****			(MADE GROUN	ID)			133	
									-	· x: ·	×××	0.40		Firm to stiff co	nsistencv*	light brown m	ottled		153
ES	0.50								0.50 -	X				orange silty cl				1333	
									-	× · · ·	· x .							EE	
									-	× · · ×	÷							F3-3	
									-	· x . · .	· x .							EE	
ES + D	1.00								1.00 -	. · · · ×	·								
										· x . · .	· x .								
									-	× ×	÷								
									-	·x.·.	· x .								
									1.50 -	X									
										× . · .	· x .								
									-	∵×∶.	÷								
									-	~ · · ·	· x .								
D	2.00								2.00 -	, · · · ×	· · · ·								
									-	· x . · .	· x .								
										x · · · ×	÷								
									-	· x . · .	· x .								
									2.50 -	, · · ×	÷								
										×	· x .								
									-	x X	. x.								
									-	·×.·.		3.00							
D	3.00								3.00 -										
										_									
									-	-									
									-	-									
									3.50 -										
										_									
									-	_									
									-	-									
									4.00 -										
									-	-									
									-	-									
									4.50 -										
										4									
									.	4									
									.	-									
									5.00 -	1									
							L												
		5	Samplir	ng Cod										(U*) Non reco ark, UB11 1BD	overy of San	nple			
												eground way s.com W: www							

APPENDIX 3A – CHEMICAL LABORATORY TEST RESULTS (APRIL 2019)

Emma Hucker Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: Jomas Associates -

Analytical Report Number : 19-32464

Replaces Analytical Report Number : 19-32464, issue no. 1

Project / Site name:	Egley Road, Woking, GU22 0AF	Samples received on:	08/03/2019
Your job number:	JJ1459	Samples instructed on:	11/03/2019
Your order number:	P1381JJ1459.7	Analysis completed by:	28/03/2019
Report Issue Number:	2	Report issued on:	28/03/2019
Samples Analysed:	11 soil samples		

Signed:

Rexona Rahman Head of Customer Services For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: Egley Road, Woking, GU22 0AF Your Order No: P1381JJ1459.7

Toul Older No: P1381331439.

Lak Camala Namkan				1174604	1174605	1174000	1174607	1174600
Lab Sample Number				1174604	1174605 WS4	1174606	1174607	1174608 WS7
Sample Reference Sample Number				WS2	-	WS5	WS6	None Supplied
•				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.25	0.25	0.25	0.25	0.20
Date Sampled				07/03/2019	06/03/2019	06/03/2019	06/03/2019	07/03/2019
Time Taken	-			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	12	19	13	14
Total mass of sample received	kg	0.001	NONE	0.54	0.41	0.54	0.49	0.48
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.6	5.8	6.0	5.9	5.9
Total Cyanide	mg/kg	1	MCERTS	< 1	4	3	4	< 1
Total Sulphate as SO_4	mg/kg	50	MCERTS	400	400	310	380	290
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.047	0.015	0.0092	0.014	0.014
Water Soluble SO4 16hr extraction (2:1 Leachate	<u>,</u>							
Equivalent)	mg/l	1.25	MCERTS	46.5	14.6	9.2	14.1	14.2
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.1	1.3	-	-	-
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
• • • •								
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.22	0.24	< 0.05	0.28	0.35
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.62	0.77	0.38	0.70	0.54
Pyrene	mg/kg	0.05	MCERTS	0.54	0.68	0.34	0.62	0.49
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.35	0.42	0.24	0.34	0.30
Chrysene	mg/kg	0.05	MCERTS	0.34	0.36	0.20	0.41	0.24
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.50	0.53	0.38	0.58	0.37
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.27	0.23	0.14	0.22	0.16
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.51	0.47	0.31	0.47	0.28
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.27	0.26	< 0.05	0.26	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.34	0.25	< 0.05	0.30	< 0.05
		0.00		0.01	5.25	. 5105	0.00	. 3105
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	3.96	4.21	1.99	4.18	2.73
	111g/ kg	0.0	HOLINIS	5.50	1.61	1.77		2.75
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	8.0	7.5	5.9	14	6.2
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	0.8	0.3	0.5	0.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	2.0	5.8	4.7	6.1	1.7
Chromium (hexavalent)		0.2 4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
	mg/kg	4			< 4.0 71		< 4.0 72	< 4.0 38
Chromium (aqua regia extractable)	mg/kg		MCERTS	35		50		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	35	71	57	73	33
Lead (aqua regia extractable)	mg/kg	1	MCERTS	62	89	81	110	56
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.4	0.7	0.5	0.7	0.6
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	7.9	12	9.9	11	4.8
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	85	160	130	170	55

Project / Site name: Egley Road, Woking, GU22 0AF Your Order No: P1381JJ1459.7

Lab Sample Number				1174604	1174605	1174606	1174607	1174608
Sample Reference				WS2	WS4	WS5	WS6	WS7
Sample Number				None Supplied				
Depth (m)				0.25	0.25	0.25	0.25	0.20
Date Sampled				07/03/2019	06/03/2019	06/03/2019	06/03/2019	07/03/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Monoaromatics & Oxygenates

Benzene	ug/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	ua/ka	1	MCERTS	< 1.0	-	-	-	< 1.0

Petroleum Hydrocarbons								
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	< 0.1	-
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	-	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	-	-	13
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	-	-	13
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	-	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	12	-	-	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	37	-	-	-	33
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	49	-	-	-	41
TPH (C10 - C12)	mg/kg	2	MCERTS	-	6.4	< 2.0	9.0	-
TPH (C12 - C16)	mg/kg	4	MCERTS	-	7.9	7.8	12	-
TPH (C16 - C21)	mg/kg	1	MCERTS	-	8.9	11	20	-
TPH (C21 - C40)	mg/kg	10	MCERTS	-	46	51	95	-

Lab Sample Number				1174604	1174605	1174606	1174607	1174608
Sample Reference Sample Number				WS2 None Supplied	WS4 None Supplied	WS5 None Supplied	WS6 None Supplied	WS7 None Supplied
Depth (m)				0.25	0.25	0.25	0.25	0.20
Date Sampled				07/03/2019	06/03/2019	06/03/2019	06/03/2019	07/03/2019
Time Taken				None Supplied				
	1			None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs	Į		-					
Chloromethane	µg/kg	1	ISO 17025	< 1.0	-	_	-	< 1.0
Chloroethane	µg/kg	1	NONE	< 1.0	_		-	< 1.0
Bromomethane	µg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
Vinyl Chloride	µg/kg	1	NONE	< 1.0	-	-	-	< 1.0
Trichlorofluoromethane	µg/kg	1	NONE	< 1.0	-	-	-	< 1.0
1,1-Dichloroethene	µg/kg	1	NONE	< 1.0	-	-	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
Cis-1,2-dichloroethene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,1-Dichloroethane	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
2,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Trichloromethane 1,1,1-Trichloroethane	μg/kg μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	-	-	< 1.0 < 1.0
1.2-Dichloroethane	μg/kg μg/kg	1	MCERTS	< 1.0	-	-		< 1.0
1,1-Dichloropropene	µg/kg µg/kg	1	MCERTS	< 1.0	-	-		< 1.0
Trans-1,2-dichloroethene	µg/kg	1	NONE	< 1.0	_	-		< 1.0
Benzene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Tetrachloromethane	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Trichloroethene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Dibromomethane	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Bromodichloromethane	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,1,2-Trichloroethane	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,3-Dichloropropane Dibromochloromethane	µg/kg µg/kg	1	ISO 17025 ISO 17025	< 1.0 < 1.0	-	-	-	< 1.0
Tetrachloroethene	µg/kg µg/kg	1	NONE	< 1.0	-	-		< 1.0 < 1.0
1,2-Dibromoethane	µg/kg	1	ISO 17025	< 1.0	-	-		< 1.0
Chlorobenzene	µg/kg	1	MCERTS	< 1.0	_	-	-	< 1.0
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
p & m-Xylene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Styrene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Tribromomethane	µg/kg	1	NONE	< 1.0	-	-	-	< 1.0
o-Xylene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Isopropylbenzene Bromobenzene	µg/kg	1 1	MCERTS MCERTS	< 1.0	-	-	-	< 1.0 < 1.0
n-Propylbenzene	μg/kg μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
2-Chlorotoluene	µg/kg µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
4-Chlorotoluene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
tert-Butylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
sec-Butylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
p-Isopropyltoluene	µg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
1,2-Dichlorobenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,4-Dichlorobenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Butylbenzene	µg/kg	1	MCERTS ISO 17025	< 1.0 < 1.0	-	-	-	< 1.0
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	< 1.0	-	-		< 1.0 < 1.0
Hexachlorobutadiene	μg/kg μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
	∎ P9/N9		130 17023	× 1.0				· 1.0

Project / Site name: Egley Road, Woking, GU22 0AF Your Order No: P1381JJ1459.7

1001 Older 100. F 1301331433

Lab Sample Number				1174604	1174605	1174606	1174607	1174608
Sample Reference				WS2	WS4	WS5	WS6	WS7
Sample Number				None Supplied				
Depth (m)				0.25	0.25	0.25	0.25	0.20
Date Sampled				07/03/2019	06/03/2019	06/03/2019	06/03/2019	07/03/2019
Time Taken				None Supplied				
				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Pesticide and Herbicide Screen			-					
Pesticides/Herbicides Screen in Soil	P/A	N/A	NONE	-	-	-	-	-
Organochlorine Pesticides (OCP)								
Aldrin	ug/kg	10	NONE	-	-	-	-	-
BHC-alpha (benzene hexachloride)	ug/kg	10	NONE	-	-	-	-	-
BHC-beta	ug/kg	10	NONE	-	-	-	-	-
BHC-delta	ug/kg	10	NONE	-	-	-	-	-
BHC-gamma (Lindane, gamma HCH)	ug/kg	10	NONE	-	-	-	-	-
Chlordane-cis	ug/kg	10	NONE	-	-	-	-	-
Chlordane-trans	ug/kg	10	NONE	-	-	-	-	-
Chlorothalonil	ug/kg	10	NONE	-	-	-	-	-
DDD-o,p'	ug/kg	1	NONE	-	-	-	-	-
DDD-p,p'	ug/kg	1	NONE	-	-	-	-	-
DDE-o, p'	ug/kg	1	NONE	-	-	-	-	-
DDE-p,p'	ug/kg	1	NONE	-	-	-	-	-
DDT-o,p'	ug/kg	1	NONE	-	-	-	-	-
DDT-p,p'	ug/kg	1	NONE	-	-	-	-	-
Dichlorobenzonitrile, 2,6-	ug/kg	10	NONE	-	-	-	-	-
Dieldrin	ug/kg	10	NONE	-	-	-	-	-
Endosulfan I (alpha isomer)	ug/kg	10	NONE	-	-	-	-	-
Endosulfan II (beta isomer)	ug/kg	10	NONE	-	-	-	-	-
Endosulfan sulfate	ug/kg	10	NONE	-	-	-	-	-
Endrin	ug/kg	10	NONE	-	-	-	-	-
Endrin aldehyde	ug/kg	10	NONE	-	-	-	-	-
Endrin ketone	ug/kg	10	NONE	-	-	-	-	-
Heptachlor	ug/kg	10	NONE	-	-	-	-	-
Heptachlor exo-epoxide	ug/kg	10	NONE	-	-	-	-	-
Hexachlorobenzene	ug/kg	10	NONE	-	-	-	-	-
Hexachlorobutadiene	ug/kg	10	NONE	-	-		-	-
Isodrin Mathemathler, p. pl	ug/kg	10	NONE	-	-		-	-
Methoxychlor, p,p'-	ug/kg	10	NONE	-	-	-	-	-
Pentachlorobenzene	ug/kg	10	NONE	-	-	-	_	-
Tecnazene	ug/kg	10	NONE				-	
Tetrachlorobenzene, 1,2,4,5-	ug/kg	10	NONE	-	-	-	-	-
Trichlorobenzene, 1,2,3-	ug/kg	10	NONE	-	-	-	-	-
Trichlorobenzene, 1,3,5-	ug/kg	10	NONE	-	-	-	-	-
Trifluralin	ug/kg	10	NONE	-	-	-	-	-

Project / Site name: Egley Road, Woking, GU22 0AF Your Order No: P1381JJ1459.7

Toul Older No: P1381331439.

Sample Kerberne W68 W79 TP TP2 HDP2 Depth (m) 0.25 0.25 0.25 0.425 0.40 0.20 Depth (m) 0.25 0.25 0.25 0.41 0.40 0.20 Depth (m) 0.25 0.25 0.25 0.41 0.40 0.20 Stangle Kerberge 0.60 0.7032/019 07/032/019 07/032/019 07/032/019 07/032/019 Time Taken More Suppled Nore Sup					1171000	1171610		1171610	1171610	
Sample Number None Supplied None Sup	Lab Sample Number				1174609 WS8	1174610 W/S0	1174611 TD1	1174612 TD2	1174613	
Depth (m) 0.75 0.75 0.75 0.75 0.76 0.703/2019 07/03/2019										
Date Sampled Option 2019 OP/03/2019 OP/0										
Time Taken Hone Supplied None Supplied <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					None Supplieu	None Supplied	None Supplieu	None Supplied	None Supplied	
	Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status						
	Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Adversion is Subject Type N/A SO 17025 Not-detected Not-detected Not-detected Not-detected General Lorenanics pt: Junus N/A MCRTS 6.4 6.9 7.9 7.7 7.4 Total Qvalute mg/hg 5.0 MCRTS 380 310 1000 590 410 Mater Soluble SOL 1.016 0.015 0.016 0.42 0.20 0.080 Water Soluble SOL fibr extraction (2:1 Leachate g1 0.0025 MCRTS 1.4.5 1.6.4 422 197 7.8.8 Total Organic Carbon (TOC) % 0.1 MCRTS < 1.0	Moisture Content	%	N/A	NONE	25	17	16	19	12	
General Lorganics Pf Luos N/A MCRTS 6.4 6.9 7.9 7.7 7.4 Total Quiphate as SO, Mater Soluble SOL 16th extraction (2:1 Leachate mayle 50 MCRTS 380 310 1000 590 410 Gaiver Soluble SOL 16th extraction (2:1 Leachate g/l 0.0012 MCRTS 380 310 1000 590 410 Gaiver Soluble SOL 16th extraction (2:1 Leachate g/l 0.0012 MCRTS 300 1.4 1.0 - - Total Organic Carbon (TOC) % 0.1 MCRTS < 1.0	Total mass of sample received	kg	0.001	NONE	0.49	0.47	0.45	0.61	0.49	
General Lorganics Pf Luos N/A MCRTS 6.4 6.9 7.9 7.7 7.4 Total Quiphate as SO, Mater Soluble SOL 16th extraction (2:1 Leachate mayle 50 MCRTS 380 310 1000 590 410 Gaiver Soluble SOL 16th extraction (2:1 Leachate g/l 0.0012 MCRTS 380 310 1000 590 410 Gaiver Soluble SOL 16th extraction (2:1 Leachate g/l 0.0012 MCRTS 300 1.4 1.0 - - Total Organic Carbon (TOC) % 0.1 MCRTS < 1.0				-						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected	
Total Cynaide maka maka Total Subble SO 15hr extraction (2:1 Leachate guivalent) maka SO 90 MCRETS 380 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	General Inorganics									
Total Subpate as SO, mg/kg 50 MCRTS 380 310 1000 590 410 Water Solub SOV 16hr extraction (2:1 Leachate g/ 0.00125 WCRTS 0.015 0.016 0.42 0.20 0.0000 Equivalent) mg/l 1.25 WCRTS 14.5 16.4 422 197 79.8 Total Organic Carbon (TOC) W 0.1 WCRTS < 1.0	pH - Automated	pH Units								
Water Soluble SO4 16fv extraction (2:1 Leachate gr/l 0.0015 MCERTS 0.015 0.016 0.42 0.20 0.080 Water Soluble SO4 16fv extraction (2:1 Leachate gr/l 0.00125 MCERTS 0.015 0.016 0.42 0.20 0.080 Water Soluble SO4 16fv extraction (2:1 Leachate gr/l 1.25 MCERTS 1.45 16.4 422 197 7.9.8 Total Phenols Total Phenols (monohydric) mg/g 1 MCERTS < 1.0	Total Cyanide									
Equivalent) g1 0.00125 MCRTS 0.015 0.016 0.42 0.20 0.009 Mater Solub SOL 160r extraction (2:1 Leachate mg1 1.25 MCRTS 1.45 1.6.4 422 197 79.8 Total Organic Carbon (TOC) % 0.1 MCRTS - 1.4 1.0 - - Total Phenols 1.4 1.0 <		mg/kg	50	MCERTS	380	310	1000	590	410	
Equivalent) mg/l 1.25 MCERTS 14.5 16.4 422 197 79.8 Total Organic Carbon (TOC) % 0.1 MCERTS - 1.4 1.0 - - Total Phenols (monhydric) mg/kg 1 MCERTS < 1.0	Equivalent)	g/l	0.00125	MCERTS	0.015	0.016	0.42	0.20	0.080	
Total Organic Carbon (TOC) % 0.1 MCERTS - 1.4 1.0 - - Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0 < - - Speciated PAHs Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05 < < 0.05 < < 0.05 < < 0.05 < < < < No < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <		ma/l	1 25	MCEDTC	14 5	16.4	477	107	70.0	
Total Phenols Total Phenols (monohydric) mg/kg 1 MCERTS <th colsp<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Speciated PAHs Naphthalene m_g/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <td>Total Phenois</td> <td>70</td> <td>0.1</td> <td>MCERTS</td> <td></td> <td>1.4</td> <td>1.0</td> <td>-</td> <td></td>	Total Phenois	70	0.1	MCERTS		1.4	1.0	-		
Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	• • • •									
Acenaphthylene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <0.05 < 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Speciated PAHs									
Acenaphthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0	Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Fluorene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Phenanthrene mg/kg 0.05 MCERTS < 0.05	Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Fluoranthene mg/kg 0.05 MCERTS 0.57 < 0.05 1.1 1.1 0.44 Pyrene mg/kg 0.05 MCERTS 0.33 < 0.05	Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.34	0.32	< 0.05	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Anthracene	mg/kg		MCERTS	< 0.05	< 0.05	0.13	0.13	< 0.05	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fluoranthene	mg/kg	0.05	MCERTS	0.57	< 0.05	1.1	1.1	0.44	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Pyrene	mg/kg		MCERTS						
Benzo(b)fluoranthene mg/kg 0.05 MCERTS 0.40 < 0.05 0.68 0.93 0.44 Benzo(b)fluoranthene mg/kg 0.05 MCERTS 0.31 < 0.05	Benzo(a)anthracene	mg/kg		MCERTS						
Benzo(k/fluoranthene mg/kg 0.05 MCERTS 0.31 < 0.05 0.33 0.36 0.18 Benzo(a)pyrene mg/kg 0.05 MCERTS 0.42 < 0.05	Chrysene									
Benzo(a)pyrene mg/kg 0.05 MCERTS 0.42 < 0.05 0.67 0.83 0.41 Indenc(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.23 < 0.05 0.33 0.41 0.21 Dibenz(a,h)anthracene mg/kg 0.05 MCERTS 0.23 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	Benzo(b)fluoranthene									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
DibenZ(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05										
Benzo(ghi)perylene mg/kg 0.05 MCERTS 0.28 < 0.05 0.41 0.54 0.26 Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 3.39 < 0.80										
Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 3.39 < 0.80 6.10 6.84 2.92 Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 2.2 4.4 4.8 5.0 7.9 Boron (water soluble) mg/kg 0.2 MCERTS 0.4 0.4 1.2 0.8 0.6 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 2.2 2.5 1.6 1.5 1.7 Chromium (hexavalent) mg/kg 4 MCERTS < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 <										
Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 3.39 < 0.80 6.10 6.84 2.92 Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 2.2 4.4 4.8 5.0 7.9 Boron (water soluble) mg/kg 0.2 MCERTS 0.4 0.4 1.2 0.8 0.6 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 2.2 2.5 1.6 1.5 1.7 Chromium (hexavalent) mg/kg 1 MCERTS 2.4 41 35 33 32 Copper (aqua regia extractable) mg/kg 1 MCERTS 27 33 30 29 29 Lead (aqua regia extractable) mg/kg 1 MCERTS 56 53 57 48 50 Mercury (aqua regia extractable) mg/kg 1 MCERTS <0.3	Benzo(gni)perylene	mg/kg	0.05	MCERTS	0.28	< 0.05	0.41	0.54	0.26	
Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 2.2 4.4 4.8 5.0 7.9 Boron (water soluble) mg/kg 0.2 MCERTS 0.4 0.4 1.2 0.8 0.6 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 2.2 2.5 1.6 1.5 1.7 Chromium (hexavalent) mg/kg 4 MCERTS <4.0	Total PAH									
Arsenic (aqua regia extractable)mg/kg1MCERTS2.24.44.85.07.9Boron (water soluble)mg/kg0.2MCERTS0.40.41.20.80.6Cadmium (aqua regia extractable)mg/kg0.2MCERTS2.22.51.61.51.7Chromium (hexavalent)mg/kg4MCERTS < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 Chromium (aqua regia extractable)mg/kg1MCERTS 24 41353332Copper (aqua regia extractable)mg/kg1MCERTS 27 3330 29 29 Lead (aqua regia extractable)mg/kg1MCERTS < 56 53 57 48 50 Mercury (aqua regia extractable)mg/kg0.3MCERTS < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 Nickel (aqua regia extractable)mg/kg1MCERTS 5.6 6.3 7.5 9.8 7.8 Selenium (aqua regia extractable)mg/kg1MCERTS < 1.0 < 1.0 < 1.0 < 1.0	Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	3.39	< 0.80	6.10	6.84	2.92	
Boron (water soluble) mg/kg 0.2 MCERTS 0.4 0.4 1.2 0.8 0.6 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 2.2 2.5 1.6 1.5 1.7 Chromium (hexavalent) mg/kg 4 MCERTS < 4.0	Heavy Metals / Metalloids									
Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 2.2 2.5 1.6 1.5 1.7 Chromium (hexavalent) mg/kg 4 MCERTS < 4.0	Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	2.2	4.4	4.8	5.0	7.9	
mg/kg 4 MCERTS < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 <	Boron (water soluble)	mg/kg	0.2	MCERTS	0.4	0.4	1.2	0.8	0.6	
Chromium (aqua regia extractable) mg/kg 1 MCERTS 24 41 35 33 32 Copper (aqua regia extractable) mg/kg 1 MCERTS 27 33 30 29 29 Lead (aqua regia extractable) mg/kg 1 MCERTS 56 53 57 48 50 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3	Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	2.2	2.5	1.6	1.5	1.7	
Copper (aqua regia extractable) mg/kg 1 MCERTS 27 33 30 29 29 Lead (aqua regia extractable) mg/kg 1 MCERTS 56 53 57 48 50 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3	Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	
Lead (aqua regia extractable) mg/kg 1 MCERTS 56 53 57 48 50 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3	Chromium (aqua regia extractable)	mg/kg	1	MCERTS	24	41	35	33	32	
Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3 < 0.3 < 0.3 < 0.3 0.6 Nickel (aqua regia extractable) mg/kg 1 MCERTS 5.6 6.3 7.5 9.8 7.8 Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0	Copper (aqua regia extractable)	mg/kg	1	MCERTS				29	29	
Nickel (aqua regia extractable) mg/kg 1 MCERTS 5.6 6.3 7.5 9.8 7.8 Selenium (aqua regia extractable) mg/kg 1 MCERTS <1.0	Lead (aqua regia extractable)	mg/kg	1	MCERTS	56	53	57	48	50	
Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS						
	Nickel (aqua regia extractable)	mg/kg	1		5.6	6.3	7.5	9.8	7.8	
Zinc (agua regia extractable) mg/kg 1 MCERTS 68 74 84 81 80	Selenium (aqua regia extractable)	mg/kg								
	Zinc (aqua regia extractable)	mg/kg	1	MCERTS	68	74	84	81	80	

hab Gaunda Namban				1174600	1174610	1174611	1174612	1174610
Lab Sample Number				1174609 WS8	1174610 WS9	1174611 TP1	1174612 TP2	1174613 HDP2
Sample Reference Sample Number				None Supplied				
Depth (m)				0.25	0.25	0.25	0.40	0.20
				0.25	0.25	0.25	0.40	07/03/2019
Date Sampled				None Supplied				None Supplied
Time Taken	-	1	1	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	ug/kg	1	MCERTS	-	-	-	-	-
Toluene	µg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	µg/kg	1	MCERTS	-	-	-	-	-
o-xylene	µg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	-	-	-
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C10 - C12) TPH (C12 - C16)	mg/kg mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
TPH (C12 - C16) TPH (C16 - C21)	mg/kg mg/kg	4	MCERTS	< 4.0 10	< 4.0 7.9	< 4.0 11	< 4.0 8.2	< 1.0
TPH (C10 - C21) TPH (C21 - C40)	2, 2	10	MCERTS	10	25	27	56	< 10
IPTI (UZI - U4U)	mg/kg	10	MULERIS	1/	25	21	00	< 10

Lab Sample Number				1174609	1174610	1174611	1174612	1174613
Sample Reference				WS8	WS9	TP1	TP2	HDP2
Sample Number				None Supplied				
Depth (m)				0.25	0.25	0.25	0.40	0.20
Date Sampled				06/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019
Time Taken	-		•	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	µg/kg	1	ISO 17025	-	-	-	-	- 1
Chloroethane	µg/kg	1	NONE	-	-	-	-	-
Bromomethane	µg/kg	1	ISO 17025	-	-	-	-	-
Vinyl Chloride	µg/kg	1	NONE	-	-	-	-	-
Trichlorofluoromethane	µg/kg	1	NONE	-	-	-	-	-
1,1-Dichloroethene	µg/kg	1	NONE	-	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	-	-	-	-	-
Cis-1,2-dichloroethene	µg/kg	1	MCERTS MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether) 1.1-Dichloroethane	µg/kg µg/kg	1	MCERTS	-	-	-	-	-
2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
Trichloromethane	µg/kg µg/kg	1	MCERTS	-	-	-	-	_
1,1,1-Trichloroethane	µg/kg	1	MCERTS	-	-	-	-	-
1,2-Dichloroethane	µg/kg	1	MCERTS	-	-	-	-	-
1,1-Dichloropropene	µg/kg	1	MCERTS	-	-	-	-	-
Trans-1,2-dichloroethene	µg/kg	1	NONE	-	-	-	-	-
Benzene	µg/kg	1	MCERTS	-	-	-	-	-
Tetrachloromethane	µg/kg	1	MCERTS	-	-	-	-	-
1,2-Dichloropropane	µg/kg	1	MCERTS MCERTS	-	-	-	-	-
Trichloroethene Dibromomethane	µg/kg µg/kg	1	MCERTS	-	-	-	-	-
Bromodichloromethane	µg/kg µg/kg	1	MCERTS	-	-	-	-	-
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	-	-	-
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	-	-	-
Toluene	µg/kg	1	MCERTS	-	-	-	-	-
1,1,2-Trichloroethane	µg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichloropropane	µg/kg	1	ISO 17025	-	-	-	-	-
Dibromochloromethane	µg/kg	1	ISO 17025	-	-	-	-	-
Tetrachloroethene	µg/kg	1	NONE	-	-	-	-	-
1,2-Dibromoethane Chlorobenzene	µg/kg	1	ISO 17025 MCERTS	-	-	-	-	-
1,1,1,2-Tetrachloroethane	µg/kg µg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
p & m-Xylene	µg/kg	1	MCERTS	-	-	-	-	-
Styrene	µg/kg	1	MCERTS	-	-	-	-	-
Tribromomethane	µg/kg	1	NONE	-	-	-	-	-
o-Xylene	µg/kg	1	MCERTS	-	-	-	-	-
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-	-	-	-	-
Isopropylbenzene	µg/kg	1	MCERTS	-	-	-	-	-
Bromobenzene	µg/kg	1	MCERTS	-	-	-	-	-
n-Propylbenzene 2-Chlorotoluene	µg/kg	1	ISO 17025 MCERTS	-	-	-	-	-
2-Chlorotoluene 4-Chlorotoluene	µg/kg µg/kg	1	MCERTS	-	-	-		-
1,3,5-Trimethylbenzene	µg/kg µg/kg	1	ISO 17025	-	_	-	-	-
tert-Butylbenzene	µg/kg	1	MCERTS	-	-	-	-	-
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025		-	-	-	-
sec-Butylbenzene	µg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	-	-	-	-	-
p-Isopropyltoluene	µg/kg	1	ISO 17025	-	-	-	-	-
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-	-	-
Butylbenzene 1,2-Dibromo-3-chloropropane	μg/kg μg/kg	1	MCERTS ISO 17025	-	-	-	-	-
1,2-Dibromo-3-chioropropane 1,2,4-Trichlorobenzene	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
Hexachlorobutadiene	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	-	-	-	-	-
		_						-

Project / Site name: Egley Road, Woking, GU22 0AF Your Order No: P1381JJ1459.7

Tour order 10. F1501551455

Lab Sample Number		1174609	1174610	1174611	1174612	1174613		
Sample Reference	WS8	WS9	TP1	TP2	HDP2			
Sample Number	None Supplied							
Depth (m)	0.25	0.25	0.25	0.40	0.20			
Date Sampled	06/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)								
Pesticide and Herbicide Screen								
esticides/Herbicides Screen in Soil P/A N/A NONE			-	Present	-	-	-	

Organochlorine Pesticides (OCP)

Organochionne Pesticides (OCP)	_							
Aldrin	ug/kg	10	NONE	-	< 10	-	-	-
BHC-alpha (benzene hexachloride)	ug/kg	10	NONE	-	< 10	-	-	-
BHC-beta	ug/kg	10	NONE	-	< 10	-	-	-
BHC-delta	ug/kg	10	NONE	-	< 10	-	-	-
BHC-gamma (Lindane, gamma HCH)	ug/kg	10	NONE	-	< 10	-	-	-
Chlordane-cis	ug/kg	10	NONE	-	< 10	-	-	-
Chlordane-trans	ug/kg	10	NONE	-	< 10	-	-	-
Chlorothalonil	ug/kg	10	NONE	-	< 10	-	-	-
DDD-o,p'	ug/kg	1	NONE	-	7.9	-	-	-
DDD-p,p'	ug/kg	1	NONE	-	74	-	-	-
DDE-o, p'	ug/kg	1	NONE	-	< 1.0	-	-	-
DDE-p,p'	ug/kg	1	NONE	-	130	-	-	-
DDT-o,p'	ug/kg	1	NONE	-	5.3	-	-	-
DDT-p,p'	ug/kg	1	NONE	-	30	-	-	-
Dichlorobenzonitrile, 2,6-	ug/kg	10	NONE	-	< 10	-	-	-
Dieldrin	ug/kg	10	NONE	-	< 10	-	-	-
Endosulfan I (alpha isomer)	ug/kg	10	NONE	-	< 10	-	-	-
Endosulfan II (beta isomer)	ug/kg	10	NONE	-	< 10	-	-	-
Endosulfan sulfate	ug/kg	10	NONE	-	< 10	-	-	-
Endrin	ug/kg	10	NONE	-	< 10	-	-	-
Endrin aldehyde	ug/kg	10	NONE	-	< 10	-	-	-
Endrin ketone	ug/kg	10	NONE	-	< 10	-	-	-
Heptachlor	ug/kg	10	NONE	-	< 10	-	-	-
Heptachlor exo-epoxide	ug/kg	10	NONE	-	< 10	-	-	-
Hexachlorobenzene	ug/kg	10	NONE	-	< 10	-	-	-
Hexachlorobutadiene	ug/kg	10	NONE	-	< 10	-	-	-
Isodrin	ug/kg	10	NONE	-	< 10	-	-	-
Methoxychlor, p,p'-	ug/kg	10	NONE	-	< 10	-	-	-
Pentachlorobenzene	ug/kg	10	NONE	-	< 10	-	-	-
Tecnazene	ug/kg	10	NONE	-	< 10	-	-	-
Tetrachlorobenzene, 1,2,4,5-	ug/kg	10	NONE	-	< 10	-	-	-
Trichlorobenzene, 1,2,3-	ug/kg	10	NONE	-	< 10	-	-	-
Trichlorobenzene, 1,3,5-	ug/kg	10	NONE	-	< 10	-	-	-
Trifluralin	ug/kg	10	NONE	-	< 10	-	-	-
				8	. 20			

Lab Sample Number				1174614							
Sample Reference				HDP1							
Sample Number				None Supplied							
Depth (m)				0.25							
Date Sampled				07/03/2019							
Time Taken			•	None Supplied							
			Accreditation Status								
Analytical Parameter	c	Limit of detection	St Se								
(Soil Analysis)	Units	ect nit	atu								
	v	ğ q	is atio								
			ň								
Stone Content	%	0.1	NONE	< 0.1							
Moisture Content	%	N/A	NONE	12							
Total mass of sample received	kg	0.001	NONE	0.47							
					. <u> </u>						
Asbestos in Soil	Туре	N/A	ISO 17025	-							
General Inorganics	1						1	1 1			
pH - Automated	pH Units	N/A	MCERTS	-			ļ				
Total Cyanide	mg/kg	1	MCERTS	-			ļ				
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-			ļ				
Water Soluble SO4 16hr extraction (2:1 Leachate	- 0	0.00125	MCEDIC								
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	-							
Equivalent)	mg/l	1.25	MCERTS	-							
Total Organic Carbon (TOC)	%	0.1	MCERTS	_							
Total Phenols											
Total Phenols (monohydric)	mg/kg	1	MCERTS	-							
Speciated PAHs											
Naphthalene	mg/kg	0.05	MCERTS	-							
Acenaphthylene	mg/kg	0.05	MCERTS	-							
Acenaphthene	mg/kg	0.05	MCERTS	-							
Fluorene	mg/kg	0.05	MCERTS	-							
Phenanthrene	mg/kg	0.05	MCERTS	-							
Anthracene	mg/kg	0.05	MCERTS	-							
Fluoranthene	mg/kg	0.05	MCERTS	-							
Pyrene	mg/kg	0.05	MCERTS	-							
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-							
Chrysene	mg/kg	0.05	MCERTS	-							
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-							
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-							
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-							
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-							
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-							
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-							
Total PAH	1		I					1 1			
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-			I				
Heavy Metals / Metalloids	1				-		r	1			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	┞─────┨		}				
Boron (water soluble)	mg/kg	0.2	MCERTS	-			l				
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-			l				
Chromium (hexavalent)	mg/kg	4	MCERTS	-			l				
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-							
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-			l				
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-							
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-							
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-							
Selenium (aqua regia extractable) Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-							
	mg/kg	1	MCERTS	-			1				

Lab Sample Number				1174614			
Sample Reference				HDP1			
Sample Number				None Supplied			
Depth (m)				0.25			
Date Sampled				07/03/2019			
Time Taken				None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics & Oxygenates	I						
Benzene	ug/kg	1	MCERTS	-			
Toluene	µg/kg	1	MCERTS	-	Ī	Ī	
Ethylbenzene	µg/kg	1	MCERTS	-	Ī	Ī	Ī
p & m-xylene	µg/kg	1	MCERTS	-			
o-xylene	µg/kg	1	MCERTS	-			
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-			
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-			
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-			
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-			
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-			
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-			
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-			
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-			
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-			
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-			
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-			
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-			
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-			
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-			
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	ļ	ļ	ļ
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	ļ	ļ	ļ
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-			
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-			
			I 1		1	1	1
TPH (C10 - C12)	mg/kg	2	MCERTS	-	Į	Į	 Į
TPH (C12 - C16)	mg/kg	4	MCERTS	-			
TPH (C16 - C21)	mg/kg	1	MCERTS	-			
TPH (C21 - C40)	mg/kg	10	MCERTS	-			

Lab Sample Number		1174614				
Sample Reference				HDP1		
Sample Number				None Supplied		
Depth (m)				0.25		
Date Sampled				07/03/2019		
Time Taken				None Supplied		
			Accreditation Status			
Analytical Parameter	ç	Limit of detection	cred			
(Soil Analysis)	Units	ito	litat			
		n t	tion			
VOCs						
Chloromethane	µg/kg	1	ISO 17025	-		
Chloroethane	µg/kg	1	NONE	-		
Bromomethane	µg/kg	1	ISO 17025	-		
Vinyl Chloride	µg/kg	1	NONE	-		
Trichlorofluoromethane	µg/kg	1	NONE	-		
1,1-Dichloroethene	µg/kg	1	NONE	-		
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	-		
Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether)	µg/kg µg/kg	1	MCERTS MCERTS	-		
1,1-Dichloroethane	µg/kg µg/kg	1	MCERTS	-	 	
2,2-Dichloropropane	µg/kg µg/kg	1	MCERTS	-		
Trichloromethane	µg/kg	1	MCERTS	-		
1,1,1-Trichloroethane	µg/kg	1	MCERTS	-		
1,2-Dichloroethane	µg/kg	1	MCERTS	-		
1,1-Dichloropropene	µg/kg	1	MCERTS	-		
Trans-1,2-dichloroethene	µg/kg	1	NONE	-		
Benzene Tetrachloromethane	µg/kg µg/kg	1	MCERTS MCERTS	-		
1,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	-		
Trichloroethene	µg/kg	1	MCERTS	-		
Dibromomethane	µg/kg	1	MCERTS	-		
Bromodichloromethane	µg/kg	1	MCERTS	-		
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-		
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-		
Toluene 1,1,2-Trichloroethane	µg/kg	1	MCERTS MCERTS	-		
1,3-Dichloropropane	µg/kg µg/kg	1	ISO 17025	-		
Dibromochloromethane	µg/kg µg/kg	1	ISO 17025	-		
Tetrachloroethene	µg/kg	1	NONE	-		
1,2-Dibromoethane	µg/kg	1	ISO 17025	-		
Chlorobenzene	µg/kg	1	MCERTS	-		
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	-		
Ethylbenzene	µg/kg	1	MCERTS	-		
p & m-Xylene Styrene	µg/kg	1 1	MCERTS	-		
Tribromomethane	μg/kg μg/kg	1	MCERTS NONE			
o-Xvlene	µg/kg	1	MCERTS	-		
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-		
Isopropylbenzene	µg/kg	1	MCERTS	-		
Bromobenzene	µg/kg	1	MCERTS	-		
n-Propylbenzene	µg/kg	1	ISO 17025	-	 	
2-Chlorotoluene	µg/kg	1	MCERTS	-		
4-Chlorotoluene 1,3,5-Trimethylbenzene	μg/kg μg/kg	1 1	MCERTS ISO 17025	-		
tert-Butylbenzene	μg/kg μg/kg	1	MCERTS	-	 	
1,2,4-Trimethylbenzene	µg/kg µg/kg	1	ISO 17025	-		
sec-Butylbenzene	µg/kg	1	MCERTS	-	 	
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	-		
p-Isopropyltoluene	µg/kg	1	ISO 17025	-		
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-	 	
1,4-Dichlorobenzene	µg/kg	1	MCERTS	-	 L	
Butylbenzene	µg/kg	1	MCERTS ISO 17025	-	 	
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	µg/kg µg/kg	1	MCERTS	-		
Hexachlorobutadiene	μg/kg μg/kg	1	MCERTS	-	 	
1,2,3-Trichlorobenzene	µg/kg µg/kg	1	ISO 17025	-		
,,-	e''''					

Project / Site name: Egley Road, Woking, GU22 0AF Your Order No: P1381JJ1459.7

Tour Order No: P1381331439

Lab Sample Number	ab Sample Number						
Sample Reference	HDP1						
Sample Number	None Supplied						
Depth (m)	0.25						
Date Sampled		07/03/2019					
Time Taken				None Supplied			
Analytical Parameter (Soil Analysis)							
Pesticide and Herbicide Screen							
sticides/Herbicides Screen in Soil P/A N/A NONE				Absent			

Organochlorine Pesticides (OCP)

Aldrin ug/kg 10 NONE - Image: Constraint of the second	Organochionne Pesticides (OCP)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Aldrin	ug/kg	10	NONE	-		
BHC-delta ua/kg 10 NONE Interpretation Interpretation BHC-gamma (Lindane, gamma HCH) ug/kg 10 NONE Interpretation Interpretation Chordane-trans ug/kg 10 NONE Interpretation Interpretation Chlordane-trans ug/kg 10 NONE Interpretation Interpretation Chlordane-trans ug/kg 10 NONE Interpretation Interpretation Chlordane-trans ug/kg 1 NONE Interpretation Interpretation DDD-o,p' ug/kg 1 NONE Interpretation	BHC-alpha (benzene hexachloride)	ug/kg	10	NONE	-		
BHC-gamma (Lindane, gamma HCH) ug/kg 10 NONE - Image: Constraint of the second seco	BHC-beta	ug/kg	10	NONE	-		
	BHC-delta	ug/kg	10	NONE	-		
Chlordane-trans ug/kg 10 NONE - Chlordbalonil ug/kg 10 NONE - DDD-o,p' ug/kg 1 NONE - DDD-o,p' ug/kg 1 NONE - DDF-o,p' ug/kg 1 NONE - DDF-o,p' ug/kg 1 NONE - DDF-o,p' ug/kg 1 NONE - DDT-o,p' ug/kg 1 NONE -	BHC-gamma (Lindane, gamma HCH)	ug/kg	10	NONE	-		
Chlorathalonil ug/kg 10 NONE - Image: Chlorathalonil Ug/kg 1 NONE - DDD-p,p' ug/kg 1 NONE - Image: Chlorathalonil Image: Chlorathalon	Chlordane-cis	ug/kg	10	NONE	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chlordane-trans	ug/kg	10	NONE	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chlorothalonil	ug/kg	10	NONE	-		
DDE-o, p' ug/kg 1 NONE - Image: Constraint of the second secon	DDD-o,p'	ug/kg	1	NONE	-		
DDE-p,p' ug/kg 1 NONE - Image: Constraint of the state of the stat	DDD-p,p'	ug/kg	1	NONE	-		
DDT-o,p' ug/kg 1 NONE - Image: Constraint of the state of the stat	DDE-o, p'	ug/kg	1	NONE	-		
DDT-p,p' ug/kg 1 NONE - Image: Constraint of the system of the	DDE-p,p'	ug/kg	1	NONE	-		
Dichlorobenzonitrile, 2,6- ug/kg 10 NONE - Image: Constraint of the system o	DDT-o,p'	ug/kg	1	NONE	-		
Dieldrin ug/kg 10 NONE - Image: Constraint of the system of th	DDT-p,p'	ug/kg	1	NONE	-		
Endosulfan I (alpha isomer) ug/kg 10 NONE - Image: Constraint of the system	Dichlorobenzonitrile, 2,6-	ug/kg	10	NONE	-		
Endosulfan II (beta isomer) ug/kg 10 NONE - Image: Constraint of the system	Dieldrin	ug/kg	10	NONE	-		
Endosulfan sulfate ug/kg 10 NONE - Image: Constraint of the second se	Endosulfan I (alpha isomer)	ug/kg	10	NONE	-		
Endrin ug/kg 10 NONE - Image: Constraint of the system of the	Endosulfan II (beta isomer)	ug/kg	10	NONE	-		
Endrin aldehyde ug/kg 10 NONE - Image: Constraint of the system	Endosulfan sulfate	ug/kg	10	NONE	-		
Endrin ketone ug/kg 10 NONE - Image: Constraint of the state of th	Endrin	ug/kg	10	NONE	-		
Heptachlor ug/kg 10 NONE - Image: Constraint of the system Heptachlor exo-epoxide ug/kg 10 NONE - Image: Constraint of the system Imag		ug/kg	-	NONE	-		
Heptachlor exo-epoxide ug/kg 10 NONE - Image: Constraint of the system of th		ug/kg	-	NONE	-		
Hexachlorobenzene ug/kg 10 NONE - Image: Constraint of the system of the sys		ug/kg	-	NONE	-		
Hexachlorobutadiene ug/kg 10 NONE - Image: Constraint of the system of the s		ug/kg	10	NONE	-		
Isodrin ug/kg 10 NONE - Image: Constraint of the system Methoxychlor, p,p'- ug/kg 10 NONE - Image: Constraint of the system Image: Con	Hexachlorobenzene	ug/kg	10	NONE	-		
Methoxychlor, p,p'- ug/kg 10 NONE - Image: Constraint of the system		ug/kg	-	NONE	-		
Pentachlorobenzene ug/kg 10 NONE - Image: Constraint of the system Tecnazene ug/kg 10 NONE - Image: Constraint of the system Image: Co		ug/kg	10	NONE	-		
Tecnazene ug/kg 10 NONE - Image: Constraint of the state of the st	Methoxychlor, p,p'-	ug/kg	10	NONE	-		
Tetrachlorobenzene, 1,2,4,5- ug/kg 10 NONE -	Pentachlorobenzene	ug/kg	-	NONE	-		
Trichlorobenzene, 1,2,3- ug/kg 10 NONE -		ug/kg	10	NONE	-	 	
Trichlorobenzene, 1,3,5- ug/kg 10 NONE -	Tetrachlorobenzene, 1,2,4,5-	ug/kg	10	NONE	-		
	Trichlorobenzene, 1,2,3-	ug/kg	10	NONE	-		
		ug/kg		NONE	-		
	Trifluralin	ug/kg	10	NONE	-		

Project / Site name: Egley Road, Woking, GU22 0AF

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1174604	WS2	None Supplied	0.25	Brown loam and clay with gravel and vegetation.
1174605	WS4	None Supplied	0.25	Brown loam and sand with gravel and vegetation.
1174606	WS5	None Supplied	0.25	Brown loam and clay with gravel and vegetation.
1174607	WS6	None Supplied	0.25	Brown loam and sand with gravel and vegetation.
1174608	WS7	None Supplied	0.20	Brown loam and sand with gravel and vegetation.
1174609	WS8	None Supplied	0.25	Brown loam and sand with gravel and vegetation.
1174610	WS9	None Supplied	0.25	Brown loam and sand with gravel and vegetation.
1174611	TP1	None Supplied	0.25	Brown loam and clay with gravel and vegetation.
1174612	TP2	None Supplied	0.40	Brown loam and clay with gravel and vegetation.
1174613	HDP2	None Supplied	0.20	Brown loam and sand with gravel and vegetation.
1174614	HDP1	None Supplied	0.25	Brown loam and sand with gravel and vegetation.

Project / Site name: Egley Road, Woking, GU22 0AF

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Organochlorine Pesticides in soil by GC MS/MS	Detemination of Pesticides in soil by GC MS/MS	Organochlorine Pesticides in soil by GC MS/MS	L055B-PL	D	NONE
Pesticides and Herbicides in soil screening	In-house method	In-house method		W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	 Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent). 	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS

Iss No 19-32464-2 Egley Road, Woking, GU22 0AF JJ1459

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Egley Road, Woking, GU22 0AF

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Emma Hucker Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: Jomas Associates -

Analytical Report Number : 19-29684

Project / Site name:	Egley Road, Woking, GU22 0AF	Samples received on:	18/02/2019
Your job number:	JJ1459	Samples instructed on:	18/02/2019
Your order number:	P1381JJ1459.4	Analysis completed by:	01/03/2019
Report Issue Number:	1	Report issued on:	01/03/2019
Samples Analysed:	4 soil samples		

Signed:

Rexona Rahman Head of Customer Services For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland. Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	soils	- 4 weeks from reporting
	leachates	- 2 weeks from reporting
	waters	- 2 weeks from reporting
	asbestos	- 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

Project / Site name: Egley Road, Woking, GU22 0AF Your Order No: P1381JJ1459.4

Lab Sample Number				1160077	1160078	1160079	1160080	
Sample Reference				BH1	BH1	BH2	BH3	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				7.50	12.50	5.50	9.00	
Date Sampled				13/02/2019	13/02/2019	13/02/2019	13/02/2019	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	21	27	21	19	
Fotal mass of sample received	kg	0.001	NONE	2.0	2.0	2.0	2.0	

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.4	8.1	8.0	7.6	
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.094	0.081	0.020	0.22	

Project / Site name: Egley Road, Woking, GU22 0AF

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1160077	BH1	None Supplied	7.50	Grey clay and sand.
1160078	BH1	None Supplied	12.50	Grey clay.
1160079	BH2	None Supplied	5.50	Brown sandy clay.
1160080	BH3	None Supplied	9.00	Grey sandy clay.

Project / Site name: Egley Road, Woking, GU22 0AF

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX 3B – CHEMICAL LABORATORY TEST RESULTS (JUNE 2019)

Emma Hucker Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: Jomas Associates -

Analytical Report Number : 19-42208

Replaces Analytical Report Number : 19-42208, issue no. 1

Project / Site name:	Egley Road, Woking, GU22 0AF	Samples received on:	21/05/2019
Your job number:	JJ1459	Samples instructed on:	21/05/2019
Your order number:	P1381JJ1459.11	Analysis completed by:	13/06/2019
Report Issue Number:	2	Report issued on:	13/06/2019
Samples Analysed:	4 soil samples		

Signed:

Zina Abdul Razzak Senior Quality Specialist **For & on behalf of i2 Analytical Ltd.**

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 19-42208-2 Egley Road, Woking, GU22 0AF JJ1459

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

							Ā	
Lab Sample Number				1226924	1226925	1226926	1226927	
Sample Reference				WSA	WSC	WSC	WSD	
Sample Number				ES 0.25	ES 0 F0	ES 1.00	ES 0.25	
Depth (m)				0.25	0.50			
Date Sampled			17/05/2019 Nono Supplied	17/05/2019 Nono Supplied	17/05/2019 None Supplied	17/05/2019 Nono Supplied		
Time Taken		1		None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	45	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	8.3	2.1	11	9.0	
Total mass of sample received	kg	0.001	NONE	1.2	1.5	2.0	1.2	
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	-	-	-	
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected	-	Not-detected	
Asbestos Quantification (Stage 2)	1ype %	0.001	ISO 17025	< 0.001	-	-	-	
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	-	-	-	
General Inorganics	70	0.001	150 17025	< 0.001				
pH - Automated	pH Units	N/A	MCERTS	7.7	9.2	-	7.7	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	-	< 1	
Total Sulphate as SO ₄	mg/kg	50	MCERTS	490	1300	-	240	
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.059	0.36	-	0.026	
Equivalent)	mg/l	1.25	MCERTS	59.2	364	-	25.9	
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.7	-	-	0.6	
Total Phenols							-	
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Speciated PAHs					1			
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Phenanthrene Anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS	0.89	< 0.05 < 0.05	1.7 0.54	< 0.05 < 0.05	
Fluoranthene	mg/kg mg/kg	0.05	MCERTS	2.0	< 0.05	1.5	0.29	
Pyrene	mg/kg	0.05	MCERTS	1.8	< 0.05	1.3	0.29	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.3	< 0.05	0.78	< 0.05	
Chrysene	mg/kg	0.05	MCERTS	1.0	< 0.05	0.62	< 0.05	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.4	< 0.05	0.58	< 0.05	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.1	< 0.05	0.39	< 0.05	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.6	< 0.05	0.69	< 0.05	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.90	< 0.05	0.35	< 0.05	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.2	< 0.05	0.44	< 0.05	
Total DAL								
Total PAH Speciated Total EPA-16 PAHs	malka	0.0	MCEDTC	12.2	< 0.90	8.92	< 0.90	ì
Specialeu Tuldi EPA-10 PARS	mg/kg	0.8	MCERTS	13.3	< 0.80	0.92	< 0.80	
Heavy Metals / Metalloids	maller	1	MCERTS	7.3	5.7	-	4.2	I
Arsenic (aqua regia extractable) Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	0.4	-	<u>4.2</u> 0.4	
Cadmium (aqua regia extractable)	mg/kg mg/kg	0.2	MCERTS	1.7	0.4	-	0.4	
Chromium (hexavalent)	mg/kg	0.2 4	MCERTS	< 4.0	< 4.0	-	< 4.0	
Chromium (agua regia extractable)	mg/kg	1	MCERTS	38	5.6	-	31	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	33	22		34	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	51	13	-	78	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.3	< 0.3	-	0.4	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	8.7	3.5	-	8.5	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	80	78	-	67	

Analytical Report Number: 19-42208

TPH (C21 - C40)

Project / Site name: Egley Road, Woking, GU22 0AF Your Order No: P1381JJ1459.11

Lab Sample Number				1226924	1226925	1226926	1226927	
Sample Reference				WSA	WSC	WSC	WSD	
Sample Number				ES	ES	ES	ES	
Depth (m)				0.25	0.50	1.00	0.25	
Date Sampled				17/05/2019	17/05/2019	17/05/2019	17/05/2019	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
Toluene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
Ethylbenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
p & m-xylene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
o-xylene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	< 2.0	-	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	< 8.0	< 8.0	-	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	82	49	-	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	83	54	-	
				Ā	T		T	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	4.3	4.0	-	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	2.3	6.0	-	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	< 10	31	-	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	170	150	-	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	180	190	-	
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	-	-	< 2.0	
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	-	-	< 4.0	
TPH (C16 - C21)	mg/kg	1	MCERTS	20	-	-	< 1.0	
TPH (C21 - C40)	ma/ka	10	MCERTS	370	-	-	60	

20 370

MCERTS

10

mg/kg

60

Analytical Report Number: 19-42208

Project / Site name: Egley Road, Woking, GU22 0AF Your Order No: P1381JJ1459.11

								-
Lab Sample Number				1226924	1226925	1226926	1226927	
Sample Reference				WSA	WSC	WSC	WSD	
Sample Number Depth (m)				ES 0.25	ES 0.50	ES 1.00	ES 0.25	
Date Sampled				17/05/2019	17/05/2019	17/05/2019	17/05/2019	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
			Þ					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
		-	on					
VOCs	4							
Chloromethane	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	-	
Chloroethane	µg/kg	1	NONE	-	< 1.0	< 1.0	-	
Bromomethane	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	-	
Vinyl Chloride	µg/kg	1	NONE NONE	-	< 1.0	< 1.0	-	
Trichlorofluoromethane 1,1-Dichloroethene	µg/kg µg/kg	1	NONE	-	< 1.0 < 1.0	< 1.0 < 1.0	-	
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	_	< 1.0	< 1.0	-	
Cis-1,2-dichloroethene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
1,1-Dichloroethane	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
2,2-Dichloropropane	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
Trichloromethane	µg/kg	1	MCERTS MCERTS	-	< 1.0	< 1.0	-	
1,1,1-Trichloroethane 1.2-Dichloroethane	µg/kg µg/kg	1	MCERTS	-	< 1.0 < 1.0	< 1.0 < 1.0	-	
1,1-Dichloropropene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
Trans-1,2-dichloroethene	µg/kg	1	NONE	-	< 1.0	< 1.0	-	
Benzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
Tetrachloromethane	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
1,2-Dichloropropane	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
Trichloroethene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
Dibromomethane Bromodichloromethane	µg/kg µg/kg	1	MCERTS MCERTS	-	< 1.0 < 1.0	< 1.0 < 1.0	-	
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	-	
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	-	
Toluene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
1,1,2-Trichloroethane	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
1,3-Dichloropropane	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	-	
Dibromochloromethane	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	-	
Tetrachloroethene 1,2-Dibromoethane	µg/kg µg/kg	1	NONE ISO 17025		< 1.0 < 1.0	< 1.0 < 1.0	-	
Chlorobenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0		
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
Ethylbenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
p & m-Xylene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
Styrene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
Tribromomethane	µg/kg	1	NONE	-	< 1.0	< 1.0	-	
o-Xylene 1,1,2,2-Tetrachloroethane	µg/kg µg/kg	1	MCERTS MCERTS	-	< 1.0 < 1.0	< 1.0 < 1.0	-	
Isopropylbenzene	µg/kg µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
Bromobenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
n-Propylbenzene	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	-	
2-Chlorotoluene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
4-Chlorotoluene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	-	
tert-Butylbenzene 1,2,4-Trimethylbenzene	µg/kg µg/kg	1 1	MCERTS ISO 17025		< 1.0 < 1.0	< 1.0 < 1.0	-	
sec-Butylbenzene	µg/kg µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	-	
p-Isopropyltoluene	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	-	
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
1,4-Dichlorobenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
Butylbenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	-	
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	-	
1,2,4-Trichlorobenzene Hexachlorobutadiene	µg/kg µg/kg	1	MCERTS MCERTS	-	< 1.0 < 1.0	< 1.0 < 1.0	-	
1,2,3-Trichlorobenzene	µg/kg µg/kg	1	ISO 17025	-	< 1.0	< 1.0	-	
	■ P9/N9	1	100 1/025		× 1.0	× 1.0		1

Analytical Report Number:19-42208Project / Site name:Egley Road, Woking, GU22 0AFYour Order No:P1381JJ1459.11

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1226924	WSA	0.25	136	Loose Fibres	Chrysotile	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Analytical Report Number : 19-42208

Project / Site name: Egley Road, Woking, GU22 0AF

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1226924	WSA	ES	0.25	Brown loam and clay with gravel and vegetation.
1226925	WSC	ES	0.50	Brown sand with gravel and stones.
1226926	WSC	ES	1.00	Brown sand with rubble and brick.
1226927	WSD	ES	0.25	Brown loam and sand with vegetation.

Analytical Report Number : 19-42208

Project / Site name: Egley Road, Woking, GU22 0AF

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Total sulphate (as SO4 in soil) Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.		L038-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS

Iss No 19-42208-2 Egley Road, Woking, GU22 0AF JJ1459

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number : 19-42208

Project / Site name: Egley Road, Woking, GU22 0AF

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX 4 – SOIL GAS MONITORING TEST RESULTS

	GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET												
Site: Egley Road	Operative(s): JLW	Date: 14/03/2019	Time: 09:25		Round: 1 Page: 1								
	MONITORING EQUIPMENT												
Instrument Type	Instrument Make		Serial No. Date Last Calibrated										
Analox	GA5000		G501805		30/01/2019								
PID	Phocheck tiger		T-106448		04/10/2018								
Dip Meter	GeoTech												
		MONITORING CO	NDITIONS										
Weather Conditions: Gre	y/Drizzling	Ground Conditions: Wet		Temper	ature: 10°C								
Barometric Pressure (mb	par): 1000	Barometric Pressure Trend (24hr)	: Steady	Ambien	t Concentration:	0.0%CH ₄ ,	0.1%CO ₂ ,	21.0%O ₂					

	MONITORING RESULTS													
Monitoring	Flow		Atmospheric	CH₄	CH₄ %		• •	VOC (ppm)		H₂S	СО	Depth to	Depth to	Depth to Base of
Point Location	Peak	Steady	Pressure (mbar)	%	LEL	reak Sleauy	(ppm)	(ppm)	product (mbgl)	water (mbgl)	well (mbgl)			
WS2	0.0	0.0	1000	0.1	/	1.4	20.0	/	/	0	1	/	1.78	4.04
WS4	0.0	0.0	1000	0.0	/	1.2	19.8	/	/	0	0	/	2.90	3.90
WS5	+0.1	+0.1	1000	0.0	/	0.8	20.2	/	/	0	0	/	3.18	4.84
WS7	0.0	0.0	1000	0.0	/	3.9	16.3	/	/	0	0	/	3.94	4.96
WS10	0.0	0.0	1000	0.0	/	2.6	18.9	/	/	0	0	/	3.72	4.88

	GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET												
Site: Egley Road	Operative(s): JLW	Date: 21/03/2019	Time: 11:45		Round: 2		Page: 1						
	MONITORING EQUIPMENT												
Instrument Type	Instrument Make		Serial No. Date Last Calibrated										
Analox	GA5000		G501805		30/01/2019								
PID	Phocheck tiger		T-106448		04/10/2018								
Dip Meter	GeoTech												
	-	MONITORING CO	NDITIONS										
Weather Conditions: Overcas	st	Ground Conditions: Damp		Temper	ature: 13°C								
Barometric Pressure (mbar):	1031	Barometric Pressure Trend (24hr):	Steady	Ambien	t Concentration:	0.0%CH ₄ ,	0.1%CO ₂ ,	20.9%O ₂					

	MONITORING RESULTS													
Monitoring	Flow		Atmospheric	CH₄	CH₄ %		• • •	VOC (ppm)		H₂S	со	Depth to	Depth to	Depth to Base of
Point Location		Steady	Pressure (mbar)	%	LEL	CO2 %	O2 %	Peak	Steady	(ppm)	(ppm)	product (mbgl)	water (mbgl)	well (mbgl)
WS2	-0.2	-0.2	1032	0.5	/	8.3	11.8	0.1	0.1	0	0	/	1.89	4.04
WS4	0.0	0.0	1031	0.0	/	1.7	19.0	0.5	0.4	0	0	/	3.03	3.90
WS5	+0.	+0.1	1032	0.0	/	0.9	19.9	0.2	0.2	0	0	/	3.29	4.84
WS7	+0.1	+0.1	1032	0.0	/	3.4	16.7	0.2	0.2	0	0	/	3.93	4.96
WS10	+0.2	+0.2	1032	0.0	/	2.5	18.5	0.1	0.1	0	0	/	3.78	4.88

	GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET												
Site: Egley Road	Operative(s): JLW	Date: 28/03/2019	Time: 09:15		Round: 3		Page: 1						
	MONITORING EQUIPMENT												
Instrument Type	Instrument Make		Serial No. Date Last Calibrat			ated							
Analox	GA5000		G501805		30/01/2019								
PID	Phocheck tiger		T-106448	04/10/2018									
Dip Meter	GeoTech												
		MONITORING CO	NDITIONS										
Weather Conditions: Cloudy	,	Ground Conditions: Moist		Temper	ature: 12°C								
Barometric Pressure (mbar)	: 1035	Barometric Pressure Trend (24hr):	Falling	Ambien	t Concentration:	0.0%CH ₄ ,	0.1%CO ₂ ,	20.8%O ₂					

	MONITORING RESULTS													
Monitoring Point Location	Flow		Atmospheric	CH₄	CH₄ %		• • •	VOC (ppm)		H₂S	со	Depth to	Depth to	Depth to Base of
	Peak	Steady	Pressure (mbar)	%	LEL	CO2 %	O2 %	Peak	Steady	(ppm)	(ppm)	product (mbgl)	water (mbgl)	well (mbgl)
WS2	+0.1	+0.1	1035	0.0	/	17.2	3.4	0	0	0	0	/	2.14	4.03
WS4	0.0	0.0	1035	0.0	/	2.0	18.9	0	0	0	0	/	3.12	3.87
WS5	0.0	0.0	1035	0.0	/	0.9	19.9	0	0	0	0	/	3.54	4.83
WS7	0.0	0.0	1035	0.0	/	3.8	16.4	0	0	0	0	/	3.91	4.91
WS10	+0.1	+0.1	1035	0.0	/	2.7	18.0	0	0	0	0	/	3.77	4.86

	GAS AN	ND GROUNDWATER MONITORIN	NG BOREHOLE R	RECORD	SHEET			
Site: Egley Road	Operative(s): JJPB	Date: 02/04/2019	Time: 09:00		Round: 4		Page: 1	
		MONITORING EC						
Instrument Type	Instrument Make		Serial No.		Date Last Calibrate	ed		
Analox	GA5000		G501805		30/01/2019			
PID	Phocheck tiger		T-106448		04/10/2018			
Dip Meter	GeoTech							
	-	MONITORING CO	NDITIONS					
Weather Conditions: Overcast	t	Ground Conditions: Dry		Temper	ature: 7°C			
Barometric Pressure (mbar):	1002	Barometric Pressure Trend (24hr)	d (24hr): Falling Ambient Concentration: 0.0%CH ₄ , 0.1%CO			0.1%CO ₂ ,	20.9%O ₂	

	MONITORING RESULTS													
Monitoring	F	low	Atmospheric	CH₄	CH₄ %		• • •	voc	(ppm)	H₂S	СО	Depth to	Depth to	Depth to Base of
Point Location	Peak	Steady	Pressure (mbar)	%	LEL	CO₂ %	O2 %	Peak Steady (ppm)	(ppm)	product (mbgl)	water (mbgl)	well (mbgl)		
WS2	0.0	0.0	1002	0.0	/	2.4	18.8	0	0	0	0	/	2.13	3.98
WS4	0.0	0.0	1002	0.0	/	0.9	20.0	0	0	0	0	/	3.09	3.88
WS5	0.0	0.0	1002	0.0	/	0.9	20.0	0	0	0	0	/	3.32	4.84
WS7	0.0	0.0	1002	0.0	/	4.4	15.9	0	0	0	0	/	3.87	4.90
WS10	0.0	0.0	1002	0.0	/	3.0	17.9	0	0	0	0	/	3.71	4.87

	GAS A	ND GROUNDWATER MONITORIN	IG BOREHOLE R	RECORD	SHEET			
Site: Egley Road	Operative(s): JPB	Date: 24/05/2019	Time: 09:00		Round: 5	Page: 1		
		MONITORING EQ	UIPMENT					
Instrument Type	Instrument Make		Serial No.		Date Last Calibra	ated		
Analox	GA5000		G501805		30/01/2019			
PID	Phocheck tiger		T-106448		04/10/2018			
Dip Meter	GeoTech							
		MONITORING CO	NDITIONS					
Weather Conditions: Sunr	ny	Ground Conditions: Dry		Temper	ature: 19°C			
Barometric Pressure (mb	ar): 1016	Barometric Pressure Trend (24hr):	Ad (24hr): SteadyAmbient Concentration:0.1%CH4,0.1%CO2			0.1%CO ₂ ,	21.5%O ₂	

						MONIT	ORING RES	ULTS						
Monitoring	F	low	Atmospheric	CH₄	CH₄ %		• • •	voc	; (ppm)	H₂S	со	Depth to	Depth to	Depth to Base of
Point Location	Peak	Steady	Pressure (mbar)	%	LEL	CO₂ %	O2 %	Peak	Steady	(ppm)	(ppm)	product (mbgl)	water (mbgl)	well (mbgl)
WS2	-0.1	-0.1	1016	0	/	28.6	1.1	0.8	0.8	0	1	/	2.48	3.99
WS4	0	0	1016	0	/	0.9	20.3	1.4	1.4	0	0	/	3.57	3.84
WS5	0	0	1016	0	/	0.5	20.4	1	1	0	0	/	4.11	4.81
WS7	-0.1	-0.1	1016	0	/	4.7	15.6	0.5	0.5	0	1	/	3.98	4.90
WS10	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WSA	-0.1	-0.1	1016	0	/	5.7	16.0	2.2	2.2	0	1	/	1.97	2.79
WSB	0	0	1016	0.1	/	1.4	20.7	1.5	1.5	0	0	/	2.10	2.84
WSC	-0.1	-0.1	1016	0.4	/	0.9	14.4	4.3	4.3	0	9	/	2.12	2.90
WSD	-0.1	-0.1	1016	8.1	/	10.8	12.3	0.3	0.3	0	2	/	Dry	2.95

	GAS AI	ND GROUNDWATER MONITORIN	NG BOREHOLE R	RECORD	SHEET			
Site: Egley Road	Operative(s): JPB	Date: 30/05/2019	Time: 11:05		Round: 6		Page: 1	
			UIPMENT					
Instrument Type	Instrument Make		Serial No.		Date Last Calibra	ated		
Analox	GA5000		G501805		30/01/2019			
PID	Phocheck tiger		T-106448		04/10/2018			
Dip Meter	GeoTech							
		MONITORING CO	NDITIONS					
Weather Conditions: Sunr	ıy	Ground Conditions: Dry		Temper	ature: 19°C			
Barometric Pressure (mba	ar): 1019	Barometric Pressure Trend (24hr):	ad (24hr): RisingAmbient Concentration:0.1%CH4,0.1%CO2,			21.2%O ₂		

						MONIT	ORING RES	OLTS						
Monitoring	F	low	Atmospheric	CH₄	CH₄ %			voo	; (ppm)	H₂S	со	Depth to	Depth to	Depth to Base of
Point Location	Peak	Steady	Pressure (mbar)	%	LEL	CO₂ %	O2 %	Peak	Steady	(ppm)	(ppm)	product (mbgl)	water (mbgl)	well (mbgl)
WS2	0	0	1020	0	/	9.6	15.5	/	/	0	1	/	2.74	3.99
WS4	0	0	1020	0	/	0.7	20.3	/	/	0	1	/	3.62	3.84
WS5	0	0	1019	0	/	0.4	20.5	/	/	0	1	/	4.15	4.83
WS7	+0.1	+0.1	1020	0	/	3.8	17.0	/	/	0	1	/	4.02	4.90
WS10	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WSA	-0.1	-0.1	1020	0	/	5.2	16.5	/	/	0	1	/	2.03	2.70
WSB	0	0	1019	0.1	/	0.8	20.7	/	/	0	0	/	2.13	2.84
WSC	0	0	1020	0.1	/	0.4	17.6	/	/	0	2	/	2.14	2.81
WSD	0	0	1020	3.2	/	6.4	16.5	/	/	0	1	/	Dry	3.96

	GAS AI	ND GROUNDWATER MONITORIN	IG BOREHOLE R	RECORD	SHEET			
Site: Egley Road	Operative(s): JPB	Date: 06/06/2019	Time: 12:45		Round: 7		Page: 1	
			UIPMENT					
Instrument Type	Instrument Make		Serial No.		Date Last Calibra	ated		
Analox	GA5000		G501805		30/01/2019			
PID	Phocheck tiger		T-106448		04/10/2018			
Dip Meter	GeoTech							
		MONITORING CO	NDITIONS					
Weather Conditions: Show	vers	Ground Conditions: Damp		Temper	ature: 17°C			
Barometric Pressure (mba	r): 1009	Barometric Pressure Trend (24hr):	Ambient Concentration:0.1%CH4,0.1%CO2			0.1%CO ₂ ,	21.0%O ₂	

						MONIT	ORING RES	ULTS						
Monitoring	F	low	Atmospheric	CH₄	CH₄ %		• • •	voc	(ppm)	H₂S	со	Depth to	Depth to	Depth to Base of
Point Location	Peak	Steady	Pressure (mbar)	%	LEL	CO₂ %	O2 %	Peak	Steady	(ppm)	(ppm)	product (mbgl)	water (mbgl)	well (mbgl)
WS2	0	0	1010	0	/	5.2	18.3	5.6	5.6	0	1	/	2.79	3.99
WS4	-0.1	-0.1	1010	0.1	/	0.5	20.6	5.7	5.7	0	1	/	3.66	3.84
WS5	0	0	1009	0.1	/	0.4	20.8	5.2	5.2	0	1	/	4.19	4.81
WS7	0	0	1010	0.1	/	5.0	16.1	4.6	4.6	0	1	/	4.06	4.90
WS10	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WSA	0	0	1010	0.1	/	5.0	16.9	8.3	8.3	0	1	/	2.09	2.79
WSB	-0.1	-0.1	1009	0.1	/	0.7	20.7	8.8	8.8	0	1	/	2.17	2.84
WSC	-0.1	-0.1	1010	0.1	/	0.5	18.7	6.6	6.6	0	1	/	2.20	2.90
WSD	-0.2	-0.2	1010	2.6	/	6.6	17.2	4.6	4.6	0	1	/	Dry	2.95

	GAS AI	ND GROUNDWATER MONITORIN	IG BOREHOLE R	RECORD	SHEET			
Site: Egley Road	Operative(s): JPB	Date: 06/06/2019	Time: 12:45		Round: 7		Page: 1	
			UIPMENT					
Instrument Type	Instrument Make		Serial No.		Date Last Calibra	ated		
Analox	GA5000		G501805		30/01/2019			
PID	Phocheck tiger		T-106448		04/10/2018			
Dip Meter	GeoTech							
		MONITORING CO	NDITIONS					
Weather Conditions: Show	vers	Ground Conditions: Damp		Temper	ature: 17°C			
Barometric Pressure (mba	r): 1009	Barometric Pressure Trend (24hr):	Ambient Concentration:0.1%CH4,0.1%CO2			0.1%CO ₂ ,	21.0%O ₂	

						MONIT	ORING RES	ULTS						
Monitoring	F	low	Atmospheric	CH₄	CH₄ %		• • •	voc	(ppm)	H₂S	со	Depth to	Depth to	Depth to Base of
Point Location	Peak	Steady	Pressure (mbar)	%	LEL	CO₂ %	O2 %	Peak	Steady	(ppm)	(ppm)	product (mbgl)	water (mbgl)	well (mbgl)
WS2	0	0	1010	0	/	5.2	18.3	5.6	5.6	0	1	/	2.79	3.99
WS4	-0.1	-0.1	1010	0.1	/	0.5	20.6	5.7	5.7	0	1	/	3.66	3.84
WS5	0	0	1009	0.1	/	0.4	20.8	5.2	5.2	0	1	/	4.19	4.81
WS7	0	0	1010	0.1	/	5.0	16.1	4.6	4.6	0	1	/	4.06	4.90
WS10	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WSA	0	0	1010	0.1	/	5.0	16.9	8.3	8.3	0	1	/	2.09	2.79
WSB	-0.1	-0.1	1009	0.1	/	0.7	20.7	8.8	8.8	0	1	/	2.17	2.84
WSC	-0.1	-0.1	1010	0.1	/	0.5	18.7	6.6	6.6	0	1	/	2.20	2.90
WSD	-0.2	-0.2	1010	2.6	/	6.6	17.2	4.6	4.6	0	1	/	Dry	2.95

	GAS AN	ND GROUNDWATER MONITORIN	IG BOREHOLE R	ECORD	SHEET	
Site: Egley Road	Operative(s): AMM	Date: 10/06/2019	Time: 11:52		Round: 8	Page: 1
		MONITORING EQ	UIPMENT			
Instrument Type	Instrument Make		Serial No.		Date Last Calibrated	
Analox	GA5000		G501805		30/01/2019	
PID	Phocheck tiger		T-106448		04/10/2018	
Dip Meter	GeoTech					
		MONITORING CO	NDITIONS			
Weather Conditions: Raining		Ground Conditions: Wet		Temper	ature: 15°C	
Barometric Pressure (mbar):	t Concentration: 0.1%CH ₄ ,	0.1%CO ₂ , 21.4%O ₂				

						MONIT	ORING RES	ULTS						
Monitoring	F	low	Atmospheric	CH₄	CH₄ %			voc	(ppm)	H₂S	со	Depth to	Depth to	Depth to Base of
Point Location	Peak	Steady	Pressure (mbar)	%	LEL	CO2 %	O2 %	Peak	Steady	(ppm)	(ppm)	product (mbgl)	water (mbgl)	well (mbgl)
WS2	+0.3	+0.3	1014	0.1	/	12.6	14.4	2	2	0	0	/	2.79	3.99
WS4	+0.2	+0.2	1014	0.1	/	0.4	20.6	5	5	0	0	/	3.63	3.84
WS5	+0.1	+0.1	1014	0.1	/	0.4	20.6	5	5	0	0	/	3.63	4.83
WS7	+0.1	+0.1	1014	0.1	/	4.5	17.6	5	5	0	0	/	4.02	4.90
WS10	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WSA	+0.3	+0.3	1014	0.1	/	5.2	17.1	3	3	0	0	/	2.10	2.76
WSB	+0.3	+0.3	1013	0.1	/	0.9	20.6	4	4	0	0	/	2.17	2.85
WSC	+0.4	+0.4	1013	0.1	/	0.7	17.5	6	5	0	0	/	2.07	2.80
WSD	+0.2	+0.2	1014	3.3	/	7.6	14.8	2	2	0	0	/	Dry	3.96

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

JOMAS ASSOCIATES LTD

6-9 The Square, Stockley Park, Uxbridge, UB11 1FW

CONTACT US

Website: www.jomasassociates.com Tel: 0843-289-2187 Fax: 0872-115-4505 Email: info@jomasassociates.com